Emgu-WPF学习使用-中值模糊
实现效果:
实现途径:
前提:Image File-> System.Drawing.Bitmap->Image<Bgr, byte>
string sFile = GlobalVar.DATAS_PATH + "Samples/Test1.png";
BitmapImage oOriginBitSrc = new BitmapImage(new Uri(sFile));
System.Drawing.Image oImgOrigin = System.Drawing.Image.FromFile(sFile);
System.Drawing.Bitmap oBitmap = new System.Drawing.Bitmap(oImgOrigin);
Image<Bgr, byte> imgSrc = new Image<Bgr, byte>(oBitmap);
oBitmap.Dispose();
第一行效果:原图->中值模糊->高斯模糊->灰度化->Otsu二值化。
//中值模糊
Image<Bgr, byte> imgMedian = imgSrc.SmoothMedian(5); //使用5*5的卷积核
// 高斯模糊
Image<Bgr, byte> imgGaussian = imgMedian.SmoothGaussian(5);
// 灰度化
Image<Gray, byte> imgGray = new Image<Gray, byte>(imgGaussian.Size);
CvInvoke.CvtColor(imgGaussian, imgGray, ColorConversion.Bgr2Gray);
// Otsu二值化
Image<Gray, byte> imgThresholdOtsu = new Image<Gray, byte>(imgGray.Size);
CvInvoke.Threshold(imgGray, imgThresholdOtsu, 0, 255, ThresholdType.Otsu);
第二行效果:原图->灰度化 ->Otsu二值化 ->中值模糊
// 从原图直接灰度化
Image<Gray, byte> imgOriginGray = new Image<Gray, byte>(imgSrc.Size);
CvInvoke.CvtColor(imgSrc, imgOriginGray, ColorConversion.Bgr2Gray);
// Otsu二值化
Image<Gray, byte> imgOriginGrayThresholdOtsu = new Image<Gray, byte>(imgOriginGray.Size);
CvInvoke.Threshold(imgOriginGray, imgOriginGrayThresholdOtsu, 0, 255, ThresholdType.Otsu);
// 中值模糊
Image<Gray, byte> imgMedian = imgOriginGrayThresholdOtsu.SmoothMedian(5);
AppUtils.ShowGrayImage(this.ImgFun2Result3Zm, imgMedian);
第三行效果:原图 ->灰度化 ->高斯模糊->Otsu二值化
// 从原图直接灰度化
Image<Gray, byte> imgOriginGray = new Image<Gray, byte>(imgSrc.Size);
CvInvoke.CvtColor(imgSrc, imgOriginGray, ColorConversion.Bgr2Gray);
// 高斯模糊
Image<Gray, byte> imgGaussian = imgOriginGray.SmoothGaussian(5);
// Otsu二值化
Image<Gray, byte> imgOriginGrayThresholdOtsu = new Image<Gray, byte>(imgGaussian.Size);
CvInvoke.Threshold(imgGaussian, imgOriginGrayThresholdOtsu, 0, 255, ThresholdType.Otsu);
其他:转为BitmapSource在WPF的Image中呈现。
[DllImport("gdi32")]
private static extern int DeleteObject(IntPtr o);
/// <summary>
/// Convert an IImage to a WPF BitmapSource. The result can be used in the Set Property of Image.Source
/// </summary>
/// <param name="image">The Emgu CV Image</param>
/// <returns>The equivalent BitmapSource</returns>
public static BitmapSource ToBitmapSource(IImage image)
{
using (System.Drawing.Bitmap source = image.Bitmap)
{
IntPtr ptr = source.GetHbitmap(); //obtain the Hbitmap
BitmapSource bs = System.Windows.Interop.Imaging.CreateBitmapSourceFromHBitmap(
ptr,
IntPtr.Zero,
Int32Rect.Empty,
System.Windows.Media.Imaging.BitmapSizeOptions.FromEmptyOptions());
DeleteObject(ptr); //release the HBitmap
return bs;
}
}
为了方便查看逐步效果,我提取了以下方法。
public static void ShowImage(System.Windows.Controls.Image oImage, UMat src)
{
oImage.Dispatcher.Invoke(() => {
oImage.Source = BitmapSourceConvert.ToBitmapSource(src);
});
}
public static void ShowBgrImage(System.Windows.Controls.Image oImage, Image<Bgr, byte> src)
{
oImage.Dispatcher.Invoke(() => {
oImage.Source = BitmapSourceConvert.ToBitmapSource(src);
});
}
public static void ShowGrayImage(System.Windows.Controls.Image oImage, Image<Gray, byte> src)
{
oImage.Dispatcher.Invoke(() => {
oImage.Source = BitmapSourceConvert.ToBitmapSource(src);
});
}
我参考了链接:点击打开链接 https://www.cnblogs.com/CoverCat/p/5055644.html
点击打开链接 http://www.cnblogs.com/CoverCat/p/5043833.html
Emgu-WPF学习使用-中值模糊的更多相关文章
- 最快的3x3中值模糊
10.1国庆后,知名博主:laviewpbt http://www.cnblogs.com/Imageshop/ 发起了一个优化3x3中值模糊的小活动. 俺也参加其中,今天博主laviewpbt ...
- 【算法随记三】小半径中值模糊的急速实现(16MB图7.5ms实现) + Photoshop中蒙尘和划痕算法解读。
在本人的博客里,分享了有关中值模糊的O(1)算法,详见:任意半径中值滤波(扩展至百分比滤波器)O(1)时间复杂度算法的原理.实现及效果 ,这里的算法的执行时间和参数是无关的.整体来说,虽然速度也很快, ...
- OpenCV计算机视觉学习(4)——图像平滑处理(均值滤波,高斯滤波,中值滤波,双边滤波)
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice &q ...
- OpenCV笔记(1)(图片读取与现实、色彩空间、基础运算、均值方差、逻辑运算、泛洪填充、均值中值及自定义平滑)
一.图片读取和显示 import cv2 as cv # 图片读取cv.imread(img_path) car_img = cv.imread("car1.png") # 图片显 ...
- opencv-11-中值滤波及自适应中值滤波
开始之前 在上一篇我们实现了读取噪声图像, 然后 进行三种形式的均值滤波得到结果, 由于我们自己写的均值滤波未作边缘处理, 所以效果有一定的下降, 但是总体来说, 我们得到的结果能够说明我们的算法执行 ...
- 学习 opencv---(8)非线性滤波:中值滤波,双边滤波
正如我们上一篇文章中讲到的,线性滤波可以实现很多种不同的图像变换.然而非线性滤波,如中值滤波器和双边滤波器,有时可以达到更好的实现效果. 邻域算子的其他一些例子还有对 二值图像进行操作的形态学算子,用 ...
- Atitit 图像处理 平滑 也称 模糊, 归一化块滤波、高斯滤波、中值滤波、双边滤波)
Atitit 图像处理 平滑 也称 模糊, 归一化块滤波.高斯滤波.中值滤波.双边滤波) 是一项简单且使用频率很高的图像处理方法 用途 去噪 去雾 各种线性滤波器对图像进行平滑处理,相关OpenC ...
- [学习opencv]高斯、中值、均值、双边滤波
http://www.cnblogs.com/tiandsp/archive/2013/04/20/3031862.html [学习opencv]高斯.中值.均值.双边滤波 四种经典滤波算法,在ope ...
- opencv3 图片模糊操作-均值滤波 高斯滤波 中值滤波 双边滤波
#include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; ...
随机推荐
- Android开发之SpannableString具体解释
在实际的应用开发过程中常常会遇到.在文本的不同部分显示一些不同的字体风格的信息如:文本的字体.大小.颜色.样式.以及超级链接等. 普通情况下,TextView中的文本都是一个样式.对于类似的情况.能够 ...
- sigmoid function vs softmax function
DIFFERENCE BETWEEN SOFTMAX FUNCTION AND SIGMOID FUNCTION 二者主要的区别见于, softmax 用于多分类,sigmoid 则主要用于二分类: ...
- ASP.Net WebAPI HttpDelete/PUT方法运行或发布到生产服务器上后出现405(Method Not Allowed)错误的解决办法
原文:ASP.Net WebAPI HttpDelete/PUT方法运行或发布到生产服务器上后出现405(Method Not Allowed)错误的解决办法 本文只是个人的理解和学习记录,如果觉得本 ...
- 【Bash百宝箱】Linux shell学习
shell特点-- Linux有多种shell能够使用,默认的为bash,bash有以下几个主要特点. 1.命令记忆能力 在命令行中按上下键能够找到一个前/后输入的命令.这些命令记录在-/.bash_ ...
- QT代理Delegates使用实例(三种代理控件)
效果如下,在表格的单元格中插入控件,用Delegates方式实现 源代码如下: main.cpp文件 #include <QApplication>#include <QStanda ...
- js获取浏览器尺寸
Javascript: alert(document.body.clientWidth); //网页可见区域宽(body) alert(document.body.clientHeigh ...
- MQ选型对比RabbitMQ RocketMQ ActiveMQ
原文:MQ选型对比RabbitMQ RocketMQ ActiveMQ 几种MQ产品说明: ZeroMQ : 扩展性好,开发比较灵活,采用C语言实现,实际上他只是一个socket库的重新封装 ...
- Android组件——使用DrawerLayout仿网易新闻v4.4侧滑菜单
摘要: 转载请注明出处:http://blog.csdn.net/allen315410/article/details/42914501 概述 今天这篇博客将记录一些关于DrawerL ...
- SpringSecurity3.2.5自己定义角色及权限的教程
近期阴差阳错的搞上了SpringSecurity3.由于是自己做的小系统.中间遇到了非常多坑,基本每一个坑都踩过了,网上也查了不少资料,发现有不少错误的.更是让我绕了一圈又一圈,如今把一些主要的东西总 ...
- OpenGLES 关于 数学 的分支 - 线性变化量、离散量、随机量
关于 数学 的分支 - 线性变化量.离散量.随机量 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致"创作 ...