题目描述

二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码。如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的。现在委员会已经找出了所有的病毒代码段,试问,是否存在一个无限长的安全的二进制代码。

示例:

例如如果{011, 11, 00000}为病毒代码段,那么一个可能的无限长安全代码就是010101…。如果{01, 11, 000000}为病毒代码段,那么就不存在一个无限长的安全代码。

任务:

请写一个程序:

1.在文本文件WIR.IN中读入病毒代码;

2.判断是否存在一个无限长的安全代码;

3.将结果输出到文件WIR.OUT中。

输入输出格式

输入格式:

在文本文件WIR.IN的第一行包括一个整数n(n≤2000)(n\le 2000)(n≤2000),表示病毒代码段的数目。以下的n行每一行都包括一个非空的01字符串——就是一个病毒代码段。所有病毒代码段的总长度不超过30000。

输出格式:

在文本文件WIR.OUT的第一行输出一个单词:

TAK——假如存在这样的代码;

NIE——如果不存在。

题解:

求是否能构造一个无限长的 01 串,使得串不包含任意一个提前给定的子串.
建出 AC 自动机,显然不能走到打上终止标记的节点.
每次遍历 $ch[u][0]$, $ch[u][1]$ 找环即可.
找不到环则说明找不到长度为无限长的 01 串,否则可以找到长度为无限长的 01 串.
 
#include<bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 40000
#define N 2
using namespace std;
char str[maxn];
queue<int>Q;
int ch[maxn][3], tag[maxn], f[maxn], vis[maxn], done[maxn];
int tot,root=0;
void ins(char p[])
{
int n=strlen(p+1),cur=0;
for(int i=1;i<=n;++i)
{
int c=p[i]-'0';
if(!ch[cur][c]) ch[cur][c]=++tot;
if(tag[cur]) tag[ch[cur][c]]=1;
cur=ch[cur][c];
}
tag[cur]=1;
}
void build()
{
for(int i=0;i<2;++i) if(ch[root][i]) Q.push(ch[root][i]);
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=0;i<N;++i)
{
int q=ch[u][i];
if(!q)
{
ch[u][i]=ch[f[u]][i];
continue;
}
f[q]=ch[f[u]][i], tag[q]|=tag[f[q]];
Q.push(q);
if(tag[u])
tag[q]=1;
}
}
}
void dfs(int u)
{
if(vis[u])
{
printf("TAK\n");
exit(0);
}
if(tag[u] || done[u]) return;
done[u]=vis[u]=1;
dfs(ch[u][0]);
dfs(ch[u][1]);
vis[u]=0;
}
int main()
{
// setIO("input");
int tot;
scanf("%d",&tot);
while(tot--) scanf("%s",str+1), ins(str);
build();
dfs(0);
printf("NIE\n");
return 0;
}

  

BZOJ [Poi2000]病毒 AC自动机_DFS_细节的更多相关文章

  1. BZOJ 2938: [Poi2000]病毒 [AC自动机 拓扑排序]

    2938: [Poi2000]病毒 题意:判断是否存在无限长的不含模式串的字符串.只有01. 建出套路DP的转移图,判断有环就行了 练习一下拓扑排序 #include <iostream> ...

  2. BZOJ.2938.[POI2000]病毒(AC自动机)

    题目链接 \(Description\) 给n个模式串,问是否存在长度无限的主串,使得任何一个模式串都没有在主串中出现. \(Solution\) 先建AC自动机. 假设我们有了一个无限长的安全代码, ...

  3. [POI2000]病毒 --- AC自动机

    [POI2000]病毒 题目描述: 二进制病毒审查委员会最近发现了如下的规律: 某些确定的二进制串是病毒的代码. 如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的. 现在委员会已经找 ...

  4. 【BZOJ2938】[Poi2000]病毒 AC自动机+DFS

    [BZOJ2938][Poi2000]病毒 Description 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码 ...

  5. BZOJ2938[Poi2000]病毒——AC自动机

    题目描述 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的.现在委员会已经找出了所有的病毒代码段,试问,是否 ...

  6. BZOJ2938:[POI2000]病毒(AC自动机)

    Description 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的.现在委员会已经找出了所有的病毒代码 ...

  7. 【bzoj2938】[Poi2000]病毒 AC自动机

    题目描述 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的.现在委员会已经找出了所有的病毒代码段,试问,是否 ...

  8. 【洛谷】P2444 [POI2000]病毒——AC自动机

    题目链接 题目描述 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的.现在委员会已经找出了所有的病毒代码段, ...

  9. P2444 [POI2000]病毒 AC自动机

    P2444 [POI2000]病毒 #include <bits/stdc++.h> using namespace std; ; struct Aho_Corasock_Automato ...

随机推荐

  1. [bzoj3061][Usaco13Feb]Partitioning the Farm_动态规划_状压dp

    Partitioning the Farm bzoj-3061 Usaco13Feb 题目大意:给定一个n*n的方格图,用k条贯穿方格图的直线将整个方格图分割,使得每一块的权值和的最大值最小. 注释: ...

  2. 洛谷 P2195 HXY造公园

    P2195 HXY造公园 题目描述 现在有一个现成的公园,有n个休息点和m条双向边连接两个休息点.众所周知,HXY是一个SXBK的强迫症患者,所以她打算施展魔法来改造公园并即时了解改造情况.她可以进行 ...

  3. W5500中断寄存器的理解

    W5500中断部分,W5500中文手冊V1.0 写的不够清楚,该文是本人结合中英文手冊及自己理解,整理出有关中断部分的理解,如有不对的请指正. 一:引脚 INTn 为中断输出(Interrupt ou ...

  4. 2014年辛星解读css第二节

    第一节我们简单介绍了一下CSS的工作流程,我相信读者会有一个大体的认识,那么接下来我们将会深入的研究一下CSS的细节问题,这些问题的涉及将会使我们的工作更加完好. *************凝视*** ...

  5. Get-Acl 查看文件权限

    https://blogs.msmvps.com/erikr/2007/09/26/set-permissions-on-a-specific-service-windows/ Get-Acl .\L ...

  6. git出错调试

    https://stackoverflow.com/questions/6178401/how-can-i-debug-git-git-shell-related-problems git_trace ...

  7. B1076 [SCOI2008]奖励关 状压dp&&期望dp

    这个题的n<15,一看就是状压dp.但是状态不是很好想.f[][]存i关的状态j. 这个题另一个关键思想在于倒推,我一开始想的是正推,但是只能记忆化了. 题干: 题目描述 你正在玩你最喜欢的电子 ...

  8. Websocket实现前后台通信,demo小测试

    新需求大概如下:用户登录系统,登录成功之后建立websocket连接,实现通信 总体思路:前端不是我负责,只是简单的做个功能,先实现登录,把用户标识存入HttpSeesion,再建立websocket ...

  9. ACM_Exponentiation

    Exponentiation Time Limit: 2000/1000ms (Java/Others) Problem Description: Problems involving the com ...

  10. B - Lucky Division

    Problem description Petya loves lucky numbers. Everybody knows that lucky numbers are positive integ ...