(WC2016模拟十八)【BZOJ4299】[CodeChef]FRBSUM
咕了若干天我终于来补坑了qwq
HINT
$1\leq N,M\leq 10^5$
$1\leq \sum A_i\leq 10^9$
题解:
虽然场上做出来了但还是觉得好神啊!
假设当前集合能凑出$[1,max]$这些数,此时再加入一个数$x$:
1.若$x<=max+1$,则必定能继续凑出$[max+1,max+x]$这些数,新的$max=max+x$;
2.若$x>max+1$,则$max+1$这个数必定凑不出来,也就会成为当前的forbiddennum。
那么开一颗主席树,每次查询求出区间$[L,R]$中值在$[1,max+1]$中的数的和来更新$max$,直到$max+1$凑不出来为止;
这样子做每次$max$至少翻倍,因此每次查询至多更新$logn$次,总的时间复杂度就是$O(nlog^2n)$
ps:本题跟[LOJ2174]【FJOI2016】神秘数 为同一题意
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define inf 1000000000
#define eps 1e-9
using namespace std;
typedef long long ll;
struct node{
int v,ls,rs;
}t[];
int n,m,l,r,tot=,ans,tmp,num[],rts[];
void build(int &u,int k,int l,int r,int v){
u=++tot;
t[u].v=t[k].v+v;
t[u].ls=t[k].ls;
t[u].rs=t[k].rs;
if(l==r)return;
int mid=(l+r)/;
if(v<=mid)build(t[u].ls,t[k].ls,l,mid,v);
else build(t[u].rs,t[k].rs,mid+,r,v);
}
int query(int u,int k,int l,int r,int v){
if(l==r){
return t[k].v-t[u].v;
}
int mid=(l+r)/;
if(v<=mid)return query(t[u].ls,t[k].ls,l,mid,v);
else return query(t[u].rs,t[k].rs,mid+,r,v)+(t[t[k].ls].v-t[t[u].ls].v);
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&num[i]);
build(rts[i],rts[i-],,inf,num[i]);
}
scanf("%d",&m);
for(int i=;i<=m;i++){
scanf("%d%d",&l,&r);
tmp=query(rts[l-],rts[r],,inf,);
ans=;
while(ans<=tmp){
ans=tmp+;
tmp=query(rts[l-],rts[r],,inf,ans);
}
printf("%d\n",ans);
}
return ;
}
(WC2016模拟十八)【BZOJ4299】[CodeChef]FRBSUM的更多相关文章
- (WC2016模拟十八)Gangsters of Treeland
HINT: $1\leq N,Q\leq 10^5$ 原题:CodeChef November Challenge 2013 - MONOPLOY 题解: 其实这题是[SDOI2017]树点涂色的弱化 ...
- BZOJ4299 Codechef FRBSUM(主席树)
感觉非常不可做,于是考虑有什么奇怪的性质. 先考虑怎么求子集和mex.将数从小到大排序,假设已经凑出了0~n的所有数,如果下一个数>n+1显然mex就是n+1了,否则若其为x则可以凑出1~n+x ...
- BZOJ4299 : Codechef FRBSUM
若$[0,i]$的数都可以得到,那么$[1,所有不大于i+1的数的和]$的数都可以得到. 如此暴力枚举答案,用可持久化线段树支持查询,因为每次数字至少翻一倍,所以复杂度为$O(m\log^2n)$. ...
- BZOJ4299: Codechef FRBSUM(主席树)
题意 题目链接 数集S的ForbiddenSum定义为无法用S的某个子集(可以为空)的和表示的最小的非负整数. 例如,S={1,1,3,7},则它的子集和中包含0(S’=∅),1(S’={1}),2( ...
- bzoj4408 [Fjoi 2016]神秘数 & bzoj4299 Codechef FRBSUM 主席树+二分+贪心
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4299 https://lydsy.com/JudgeOnline/problem.php?id ...
- Web 前端开发人员和设计师必读文章推荐【系列二十八】
<Web 前端开发精华文章推荐>2014年第7期(总第28期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...
- NeHe OpenGL教程 第四十八课:轨迹球
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- WCF技术剖析之十八:消息契约(Message Contract)和基于消息契约的序列化
原文:WCF技术剖析之十八:消息契约(Message Contract)和基于消息契约的序列化 [爱心链接:拯救一个25岁身患急性白血病的女孩[内有苏州电视台经济频道<天天山海经>为此录制 ...
- Java进阶(三十八)快速排序
Java进阶(三十八)快速排序 前言 有没有既不浪费空间又可以快一点的排序算法呢?那就是"快速排序"啦!光听这个名字是不是就觉得很高端呢. 假设我们现在对"6 1 2 7 ...
随机推荐
- CorelDRAW X8制作金属质感3D立体按钮
本教程教您使用CorelDRAW X8制作金属质感3D立体按钮.绘图中主要应用渐变填充技巧为立体按钮表现物体质感和丰富的色彩变化,最后实现的效果也是不错的,是很实用的案例,教程难度一般,完成图如下: ...
- IETF透露HTTP over QUIC 将重命名为HTTP/3 协议
周一,IETF透露它将HTTP-over-QUIC实验协议重命名为HTTP / 3.HTTP-over-QUIC是一种HTTP重写,用TCP替换TCP. 如果这看起来有点为时过早,那么它与IETF的历 ...
- Git的选项参数
git的选项参数 MisSa@DESKTOP-PIQ06QO MINGW64 ~ $ git usage: git [--version] [--help] [-C <path>] [-c ...
- BZOJ 1717 [USACO06DEC] Milk Patterns (后缀数组+二分)
题目大意:求可重叠的相同子串数量至少是K的子串最长长度 洛谷传送门 依然是后缀数组+二分,先用后缀数组处理出height 每次二分出一个长度x,然后去验证,在排序的后缀串集合里,有没有连续数量多于K个 ...
- 【【henuacm2016级暑期训练】动态规划专题 H】Greenhouse Effect
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 原题意等价于:给你一个序列(实数的位置没用!)..你可以改变其中某些元素的位置(插入到某些位置中间. 然后让他变成有序的. (有序的 ...
- open函数详解
转载:https://www.cnblogs.com/frank-yxs/p/5925574.html open函数用来在进程中打开文件,如果成功则返回一个文件描述符fd. ============= ...
- COJS 1752. [BOI2007]摩基亚Mokia
1752. [BOI2007]摩基亚Mokia ★★★ 输入文件:mokia.in 输出文件:mokia.out 简单对比时间限制:5 s 内存限制:128 MB [题目描述] 摩尔瓦 ...
- 【转】工具系列:IntelliJ IDEA (Mac) 运行速度优化
转自工具系列:IntelliJ IDEA (Mac) 运行速度优化 感谢该作者解决了我使用idea debug很慢的问题 背景 IDEA 下运行程序,经常假死 5 s,作为 Mac 怎么能允许暂停 5 ...
- HDU 4302 Contest 1
维护两个优先队列即可.要注意,当出现蛋糕的位置刚好在狗的位置时,存在右边. 注意输出大小写... #include <iostream> #include <queue> #i ...
- Linux文件查找命令具体解释-which whereis find locate
原创BLog.转载请注明出处 http://blog.csdn.net/hello_hwc? viewmode=contents which命令 首先查看man which的说明 which - sh ...