平衡二叉树(Self-balancing Binary Search Tree)
Date: 2019-04-11 18:49:18
AVL树的基本操作
//存储结构
struct node
{
int data;
int height; //记录当前子树的高度(叶子->根)
//存储平衡因子的话,无法通过其子树算得该树的平衡因子
node *lchild, *rchild;
}; //新建结点
node *newNode(int v)
{
node *root = new node;
root->data = v;
root->height = ;
root->lchild = root->rchild = NULL;
return root;
} //获取当前结点所在高度
int GetHeight(node *root)
{
if(root == NULL)
return ;
return root->height;
} //计算结点的平衡因子
int GetBalanceFactors(node *root)
{
return GetHeight(root->lchild)-GetHeight(root->rchild);
} //更新结点高度
void UpdataHeight(node *root)
{
root->height = max(GetHeight(root->lchild), GetHeight(root->rchild))+;
} //查找
void Search(node *root, int x)
{
if(root == NULL)
return;
if(x == root->data)
//visit
else if(x < root->data)
Search(root->lchild, x);
else
Search(root->rchild, x);
} //左右旋互为逆操作
//左旋
void LeftRotation(node *&root)
{
node *temp = root->lchild; //temp指向新的根结点B
root->rchild = temp->lchild; //B的左子树给A的右子树
temp->lchild = root; //B的左子树变为A
UpdataHeight(root); //更新结点高度
UpdataHeight(temp);
root = temp; //令B成为新的根结点
} //右旋
void RightRotation(node *&root)
{
node *temp = root->lchild;
root->lchild = temp->rchild;
temp->rchild = root;
UpdataHeight(root);
UpdataHeight(temp);
root = temp;
} /*
1.LL: A==+2, A->lchild=+1
A作为root进行右旋
2.LR: A==+2, A->lchild=-1
A->lchild作为root进行左旋 --> 转化为LL
A作为root进行右旋
3.RR: A==-2, A->rchild=-1
A作为root进行左旋
4.RL: A==-2, A->rchild=+1
A->rchild作为root进行右旋 --> 转化为RR
A作为root进行左旋
*/ //插入
void Insert(node *&root, int v)
{
if(root == NULL)
{
root = newNode(v);
return;
}
if(v < root->data)
{
Insert(root->lchild, v);
UpdataHeight(root); //更新树高
if(GetBalanceFactor(root) == )
{
if(GetBalanceFactor(root->lchild) == )
RightRotation(root);
else
{
LeftRotation(root->lchild);
RightRotation(root);
}
}
}
else
{
Insert(root->rchild, v);
UpdataHeight(root);
if(GetBalanceFactor(root) == -)
{
if(GetBalanceFactor(root->rchild) == -)
LeftRotation(root);
else
{
RightRotation(root->rchild);
LeftRotation(root);
}
}
}
} //建立
node *Create(int data[], int n)
{
node *root = NULL;
for(int i=; i<n; i++)
Insert(root, data[i]);
return root;
}
判断一棵树是否为AVL树
#include <cstdio>
const int M = ;
int pre[M]={,,,,,,,,,};
int in[M]={,,,,,,,,,};
struct node
{
int data;
node *lchild, *rchild;
}; node *Create(int preL, int preR, int inL, int inR)
{
if(preL > preR)
return NULL;
node *root = new node;
root->data = pre[preL];
int k;
for(k=inL; k<=inR; k++)
if(in[k] == root->data)
break;
int numLeft = k-inL;
root->lchild = Create(preL+, preL+numLeft, inL, k-);
root->rchild = Create(preL+numLeft+, preR, k+, inR);
} int IsAvl = true;
int IsAVL(node *root)
{
if(root == NULL)
return -;
int bl = IsAVL(root->lchild)+;
int br = IsAVL(root->rchild)+;
if(bl-br> || bl-br<-)
IsAvl = false;
return bl>br?bl:br;
} int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("Test.txt", "r", stdin);
#endif node *root = Create(,M-,,M-);
IsAVL(root);
if(IsAvl)
printf("Yes.");
else
printf("No."); return ;
}
平衡二叉树(Self-balancing Binary Search Tree)的更多相关文章
- Leetcode No.108 Convert Sorted Array to Binary Search Tree(c++实现)
1. 题目 1.1 英文题目 Given an integer array nums where the elements are sorted in ascending order, convert ...
- [LeetCode] 108. Convert Sorted Array to Binary Search Tree ☆(升序数组转换成一个平衡二叉树)
108. Convert Sorted Array to Binary Search Tree 描述 Given an array where elements are sorted in ascen ...
- What is the difference between a binary tree, a binary search tree, a B tree and a B+ tree?
Binary Tree : It is a tree data structure in which each node has at most two children. As such there ...
- Method for balancing binary search trees
Method for balancing a binary search tree. A computer implemented method for balancing a binary sear ...
- Convert Sorted Array to Binary Search Tree leetcode java
题目: Given an array where elements are sorted in ascending order, convert it to a height balanced BST ...
- pat1099. Build A Binary Search Tree (30)
1099. Build A Binary Search Tree (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN ...
- LeetCode108——Convert Sorted Array to Binary Search Tree
题目: Given an array where elements are sorted in ascending order, convert it to a height balanced BST ...
- 【数据结构05】红-黑树基础----二叉搜索树(Binary Search Tree)
目录 1.二分法引言 2.二叉搜索树定义 3.二叉搜索树的CRUD 4.二叉搜索树的两种极端情况 5.二叉搜索树总结 前言 在[算法04]树与二叉树中,已经介绍过了关于树的一些基本概念以及二叉树的前中 ...
- LeetCode 108. 将有序数组转换为二叉搜索树(Convert Sorted Array to Binary Search Tree) 14
108. 将有序数组转换为二叉搜索树 108. Convert Sorted Array to Binary Search Tree 题目描述 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索 ...
随机推荐
- java中statickeyword
1.static变量 依照是否静态的对类成员变量进行分类可分两种:一种是被static修饰的变量,叫静态变量或类变量:还有一种是没有被static修饰的变量,叫实例变量. 两者的差别是: 对于静态变量 ...
- C++_homework_StackSort
顾名思义(?)类似于单调栈?维护一个单调递减的栈.一旦准备入栈的元素大于栈顶元素,栈一直弹出直到准备入栈的元素小于等于栈顶元素,弹出的元素压入另一个tmp栈中. #include <iostre ...
- 感知器算法 C++
We can estimate the weight values for our training data using stochastic gradient descent. Stochasti ...
- hdu2089不要62(数位dp)
不要62 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- sklearn中的数据预处理和特征工程
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...
- POJ 3230 DP
f[i][j]=max(f[i][j],f[i-1][k]-a[k][j]+b[i][j]) i->第i天 j-–>到第j个城市 #include <cstdio> #incl ...
- R - Games
Problem description Manao works on a sports TV. He's spent much time watching the football games of ...
- Cloudera Manager安装之利用parcels方式(在线或离线)安装单节点集群(包含最新稳定版本或指定版本的安装)(添加服务)(Ubuntu14.04)(四)
.. 欢迎大家,加入我的微信公众号:大数据躺过的坑 免费给分享 同时,大家可以关注我的个人博客: http://www.cnblogs.com/zlslch/ 和 http ...
- 在PL/SQL中使用带参数的游标
需求:查询并输出部门名称为SALES的员工信息 SET serveroutput ON; DECLARE CURSOR c_emp(paramName VARCHAR2) IS SELECT * FR ...
- JQuery 数据加载中禁止操作页面
比较常见的做法,但对我而言是第一次做,记录一下. 为了把找来的loading.gif 的背景色设置为透明,还特意装了quicktime. 有学到一些额外的东西. 先将div及img定义好 <bo ...