可以容易得知,F=sum(p*phi(n/p))。思路就断在这里了。。。

看过别人的,才知道如下:

由于gcd(i,n*m)=gcd(i,m)*gcd(i,n),所以gcd为积性函数。而积性函数之和为积性函数。

所以F=sum(gcd(i,n))为积性函数。n=p1^k1*p2^k2....所以f(p1^k1)*f(p2^k2)...=F。

而f(p^r)由最初公式知f(p^r)=r*(p^r-p^(r-1))+p^r。代入以上公式即可求得。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define LL __int64
using namespace std; int main(){
LL n;
while(scanf("%I64d",&n)!=EOF){
LL ans=1;
for(LL i=2;i*i<=n;i++){
LL r=0,p=1;
if(n%i==0){
while(n%i==0){
p*=i;
r++;
n/=i;
}
ans*=(r*(p-p/i)+p);
}
}
if(n>1){
ans*=(1*(n-1)+n);
}
printf("%I64d\n",ans);
}
return 0;
}

  

POJ 2480的更多相关文章

  1. POJ 2480 Longge&#39;s problem 积性函数

    题目来源:id=2480" style="color:rgb(106,57,6); text-decoration:none">POJ 2480 Longge's ...

  2. poj 2480 Longge&#39;s problem 积性函数性质+欧拉函数

    题意: 求f(n)=∑gcd(i, N) 1<=i <=N. 分析: f(n)是积性的数论上有证明(f(n)=sigma{1<=i<=N} gcd(i,N) = sigma{d ...

  3. POJ 2480 (约数+欧拉函数)

    题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n ...

  4. poj 2480 Longge's problem [ 欧拉函数 ]

    传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2 ...

  5. [poj 2480] Longge's problem 解题报告 (欧拉函数)

    题目链接:http://poj.org/problem?id=2480 题目大意: 题解: 我一直很欣赏数学题完美的复杂度 #include<cstring> #include<al ...

  6. poj 2480 Longge's problem 欧拉函数+素数打表

    Longge's problem   Description Longge is good at mathematics and he likes to think about hard mathem ...

  7. POJ 2480 Longge's problem 欧拉函数—————∑gcd(i, N) 1<=i <=N

    Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6383   Accepted: 2043 ...

  8. 【POJ 2480】Longge's problem(欧拉函数)

    题意 求$ \sum_{i=1}^n gcd(i,n) $ 给定 $n(1\le n\le 2^{32}) $. 链接 题解 欧拉函数 $φ(x)$ :1到x-1有几个和x互质的数. gcd(i,n) ...

  9. POJ 2480 求每一个数对于n的最大公约数的和

    这里是枚举每一个最大公约数p,那么最后求的是f(n) = sigma(p*phi(n/p))    phi()为欧拉函数 这里可以试着算一下,然后会发现这个是积性函数的 那么只要考虑每一类质数分开算, ...

  10. POJ 2480 Longge's problem (积性函数,欧拉函数)

    题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...

随机推荐

  1. 设计模式之二十:责任链模式(Chain of Responsibility)

    感觉这个设计模式和组合模式一样是一种非常巧妙的设计模式,在须要使用它的地方假设不使用这样的设计模式代码会变的非常复杂,可是这样的设计模式的基本原理又是非常easy的. 责任链模式: 通过使多个对象都有 ...

  2. c# 与java base64 不一致解决方案

    不一致的问题不是编码的问题  而是json字符串的问题通常我们会json 嵌套  我们先来看连个字符串 {"contentType":"","http ...

  3. Nagios监控nginx服务具体过程

    1在nginx 服务器上安装nrpe客户端: Nginx的服务须要监控起来.不然万一down了而不及时修复,会影响web应用.例如以下web应用上面启动的nginx后台进程[root@lb-net-2 ...

  4. SQL 递归使用

    直接贴代码吧= = WITH CTE AS ( -->Begin 一个定位点成员 SELECT COUNTRYORDERID,HSNAME, COUNTRYNAME,PARENTORDERID, ...

  5. 0x15 KMP

    这个算法本身就不难. poj1961 #include<cstdio> #include<iostream> #include<cstring> #include& ...

  6. MVC/MVP/MVVM区别——MVVM就是angular,视图和数据双向绑定

    摘自:http://www.ruanyifeng.com/blog/2015/02/mvcmvp_mvvm.html 一.MVC MVC模式的意思是,软件可以分成三个部分. 视图(View):用户界面 ...

  7. 使用VMware搭建3台一模一样的Linux虚拟机

    转自:https://www.linuxidc.com/Linux/2014-08/105909.htm 简介:VMware可以在个人本地一台笔记本机器上同时运行二个或更多Windows.DOS.LI ...

  8. tomcat映射路径(应用程序基本目录)的配置方法

    tomcat映射路径的配置方法 一.默认配置 位置:/conf 文件夹里的server.xml文件 <Host appBase="webapps"> appBase:可 ...

  9. [转自百度贴吧-本人亲测有效]Adobe XD 打开立即闪退问题修复

    出现闪退的原因还是因为缺少C++组件, 下载 DirectXRepairV3.7软件 原文: https://tieba.baidu.com/p/5961511474 软件下载: http://xia ...

  10. 让html页面不缓存js的实现方法

    很多朋友都会碰到这样的情况:如果我们页面加载了js的话下次打开时也会是调用这个js缓存文件,但对于我们调试时是非常的不方便了,本文就来谈论如何解决这一问题,下面一起来看看. 不缓存JS的方法其实挺简单 ...