POJ 2480
可以容易得知,F=sum(p*phi(n/p))。思路就断在这里了。。。
看过别人的,才知道如下:
由于gcd(i,n*m)=gcd(i,m)*gcd(i,n),所以gcd为积性函数。而积性函数之和为积性函数。
所以F=sum(gcd(i,n))为积性函数。n=p1^k1*p2^k2....所以f(p1^k1)*f(p2^k2)...=F。
而f(p^r)由最初公式知f(p^r)=r*(p^r-p^(r-1))+p^r。代入以上公式即可求得。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define LL __int64
using namespace std; int main(){
LL n;
while(scanf("%I64d",&n)!=EOF){
LL ans=1;
for(LL i=2;i*i<=n;i++){
LL r=0,p=1;
if(n%i==0){
while(n%i==0){
p*=i;
r++;
n/=i;
}
ans*=(r*(p-p/i)+p);
}
}
if(n>1){
ans*=(1*(n-1)+n);
}
printf("%I64d\n",ans);
}
return 0;
}
POJ 2480的更多相关文章
- POJ 2480 Longge's problem 积性函数
题目来源:id=2480" style="color:rgb(106,57,6); text-decoration:none">POJ 2480 Longge's ...
- poj 2480 Longge's problem 积性函数性质+欧拉函数
题意: 求f(n)=∑gcd(i, N) 1<=i <=N. 分析: f(n)是积性的数论上有证明(f(n)=sigma{1<=i<=N} gcd(i,N) = sigma{d ...
- POJ 2480 (约数+欧拉函数)
题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n ...
- poj 2480 Longge's problem [ 欧拉函数 ]
传送门 Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7327 Accepted: 2 ...
- [poj 2480] Longge's problem 解题报告 (欧拉函数)
题目链接:http://poj.org/problem?id=2480 题目大意: 题解: 我一直很欣赏数学题完美的复杂度 #include<cstring> #include<al ...
- poj 2480 Longge's problem 欧拉函数+素数打表
Longge's problem Description Longge is good at mathematics and he likes to think about hard mathem ...
- POJ 2480 Longge's problem 欧拉函数—————∑gcd(i, N) 1<=i <=N
Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6383 Accepted: 2043 ...
- 【POJ 2480】Longge's problem(欧拉函数)
题意 求$ \sum_{i=1}^n gcd(i,n) $ 给定 $n(1\le n\le 2^{32}) $. 链接 题解 欧拉函数 $φ(x)$ :1到x-1有几个和x互质的数. gcd(i,n) ...
- POJ 2480 求每一个数对于n的最大公约数的和
这里是枚举每一个最大公约数p,那么最后求的是f(n) = sigma(p*phi(n/p)) phi()为欧拉函数 这里可以试着算一下,然后会发现这个是积性函数的 那么只要考虑每一类质数分开算, ...
- POJ 2480 Longge's problem (积性函数,欧拉函数)
题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...
随机推荐
- spring的几个重要类和接口
1.datasource接口是javax.sql包下的接口,不是spring,是javax.sql下的 datasource接口有个重要的方法getConnection()方法 Connection ...
- Mybatis分页插件2.0版本号公布
项目地址:http://git.oschina.net/free/Mybatis_PageHelper 软件介绍:http://www.oschina.net/p/mybatis_pagehelper ...
- POJ3249 Test for Job(拓扑排序+dp)
Test for Job Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 10137 Accepted: 2348 Des ...
- 初学ToggleButton 点击button,更换button背景图片;再次点击,恢复之前背景图
上方的图标,R.drawable.register_checked 是选中图片 下方的图标, R.drawable.register_unchecked 是未选中图片 默认是上方的选中效果.点击 ...
- 运行shell命令
首先将shell命令命名为.sh文件 将上面的代码保存为test.sh.并 cd 到对应文件夹: chmod +x ./test.sh #使脚本具有运行权限 ./test.sh #运行脚本 假设报错/ ...
- 关于vue 自定义组件的写法与用法
最近在网上看到很多大神都有写博客的习惯,坚持写博客不但可以为自己的平时的学习做好记录积累 无意之中也学还能帮助到一些其他的朋友所以今天我也注册一个账号记录一下学习的点滴!当然本人能力实在有限写出的文章 ...
- SYN-Flood防御方法之一Synproxy
SYN-Flood攻击: 攻击者发送大量的SYN给服务器. 服务器必须针对每一个SYN请求回送一个SYN-ACK 应答包,此时服务器就必须保持一条半开放的连接,直到接收到一个对应的ACK应答包为止. ...
- Laravel异常处理
Laravel异常处理 标签(空格分隔): php 自定义异常类 <?php namespace App\Exceptions; use Throwable; use Exception; cl ...
- ubuntu下无法将iNode绑定到侧边栏的解决办法
title: ubuntu下无法将iNode绑定到侧边栏的解决办法 toc: false date: 2018-09-01 17:43:52 categories: methods tags: ubu ...
- 比较不错的spring学习博客
http://blog.csdn.net/tangl_99/article/details/1176141