P3047 [USACO12FEB]附近的牛Nearby Cows

题目描述

Farmer John has noticed that his cows often move between nearby fields. Taking this into account, he wants to plant enough grass in each of his fields not only for the cows situated initially in that field, but also for cows visiting from nearby fields.

Specifically, FJ's farm consists of N fields (1 <= N <= 100,000), where some pairs of fields are connected with bi-directional trails (N-1 of them in total). FJ has designed the farm so that between any two fields i and j, there is a unique path made up of trails connecting between i and j. Field i is home to C(i) cows, although cows sometimes move to a different field by crossing up to K trails (1 <= K <= 20).

FJ wants to plant enough grass in each field i to feed the maximum number of cows, M(i), that could possibly end up in that field -- that is, the number of cows that can potentially reach field i by following at most K trails. Given the structure of FJ's farm and the value of C(i) for each field i, please help FJ compute M(i) for every field i.

给出一棵n个点的树,每个点上有C_i头牛,问每个点k步范围内各有多少头牛。

输入输出格式

输入格式:

  • Line 1: Two space-separated integers, N and K.

  • Lines 2..N: Each line contains two space-separated integers, i and j (1 <= i,j <= N) indicating that fields i and j are directly connected by a trail.

  • Lines N+1..2N: Line N+i contains the integer C(i). (0 <= C(i) <= 1000)

输出格式:

  • Lines 1..N: Line i should contain the value of M(i).

输入输出样例

输入样例#1:

6 2
5 1
3 6
2 4
2 1
3 2
1
2
3
4
5
6
输出样例#1:

15
21
16
10
8
11

说明

There are 6 fields, with trails connecting (5,1), (3,6), (2,4), (2,1), and (3,2). Field i has C(i) = i cows.

Field 1 has M(1) = 15 cows within a distance of 2 trails, etc.

/*
树形dp:dp[i][j]:编号为i的节点向子节点走0~j步总和
预处理dp[i][j]数组,从当前点向父亲节点转移
容斥原理:ans+=dp[now][k],ans+=dp[father][k-1],ans-=dp[now][k-2] 不懂可手动模拟
*/
#include<iostream>
#include<cstdio>
#include<cstring> #define N 100007
#define M 27 using namespace std;
int w[N],f[N],head[N],dp[N][M];
int n,m,k,cnt;
struct edge
{
int u,to,pre;
}e[N<<]; inline int init()
{
int x=,f=;char c=getchar();
while(c>''||c<''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} inline void add(int u,int to)
{
e[++cnt].to=to;e[cnt].pre=head[u];head[u]=cnt;
} void dfs(int from,int now)
{
f[now]=from;dp[now][]=w[now];
for(int i=head[now];i;i=e[i].pre)
{
if(e[i].to!=from)
{
dfs(now,e[i].to);
for(int j=;j<=k;j++)
dp[now][j]+=dp[e[i].to][j-];
}
}
} void DP(int now)
{
int K=k,ans=;ans=dp[now][k];
while(now!= && K)
{
K--;ans+=dp[f[now]][K];
if(K) ans-=dp[now][K-];
now=f[now];
}
printf("%d\n",ans);
} int main()
{
int x,y;
n=init();k=init();
for(int i=;i<n;i++)
{
x=init();y=init();
add(x,y);add(y,x);
}
for(int i=;i<=n;i++) w[i]=init();
dfs(-,);
for(int i=;i<=n;i++) for(int j=;j<=k;j++)//dfs时dp[i][j]是第i点刚好走j步,现在求前缀和
dp[i][j]+=dp[i][j-];
for(int i=;i<=n;i++) DP(i);
return ;
}

洛谷P3047 [USACO12FEB]Nearby Cows(树形dp)的更多相关文章

  1. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  2. 洛谷 P3047 [USACO12FEB]附近的牛Nearby Cows

    P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...

  3. 【bzoj2591】[Usaco 2012 Feb]Nearby Cows 树形dp

    题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...

  4. 洛谷P1040 加分二叉树(树形dp)

    加分二叉树 时间限制: 1 Sec  内存限制: 125 MB提交: 11  解决: 7 题目描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,...,n),其中数字1,2,3,...,n ...

  5. 洛谷P4438 道路 [HNOI/AHOI2018] 树形dp

    正解:树形dp 解题报告: 传送门! 昂首先看懂题目趴QwQ大概就是说有棵满二叉树,有n个叶子节点(乡村)和n-1个非叶子节点,然后这棵树的每个节点有三个属性abc,对每个非叶子节点可以从与子节点的两 ...

  6. 洛谷 P4201 设计路线 [NOI2008] 树形dp

    正解:树形dp 解题报告: 大概是第一道NOI的题目?有点激动嘻嘻 然后先放个传送门 先大概港下这题的题意是啥qwq 大概就是给一棵树,然后可以选若干条链把链上的所有边的边权变成0,但是这些链不能有交 ...

  7. 洛谷 P3267 [JLOI2016/SHOI2016]侦察守卫(树形dp)

    题面 luogu 题解 树形\(dp\) \(f[x][y]表示x的y层以下的所有点都已经覆盖完,还需要覆盖上面的y层的最小代价.\) \(g[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上 ...

  8. 洛谷P1351 联合权值(树形dp)

    题意 题目链接 Sol 一道很简单的树形dp,然而被我写的这么长 分别记录下距离为\(1/2\)的点数,权值和,最大值.以及相邻儿子之间的贡献. 树形dp一波.. #include<bits/s ...

  9. 洛谷P4099 [HEOI2013]SAO(树形dp)

    传送门 HEOI的题好珂怕啊(各种意义上) 然后考虑树形dp,以大于为例 设$f[i][j]$表示$i$这个节点在子树中排名第$j$位时的总方案数(因为实际只与相对大小有关,与实际数值无关) 我们考虑 ...

随机推荐

  1. Ubuntu下获取内核源码

    查看当前系统使用的内核版本: apt-cache search linux-source 输出如下: linux-source - Linux kernel source with Ubuntu pa ...

  2. Django中 基于form的注册,基于ajax的登录

    1 form.py中写register的的form组件 from django import forms class Register(forms.Form): # 注册的form username ...

  3. 04 学习java养成良好的写作习惯

    1, 驼峰命名法 首字母大写 2, 写的时候大小中括号都补全,不忘记分号 不要都放在一行上 3, 缩进对其,tab键 4, 严格要求自己,养成良好的写作风格 5, javadoc可以将文档注释,直接生 ...

  4. Servlet+JSP(三):第一个Web程序

    Servlet+JSP(三):第一个Web程序在学习了服务器并成功安装后,我们知道当浏览器发送请求给服务器后,服务器会调用并执行对应的逻辑代码进行请求处理.逻辑代 码是由程序员自己编写然后放进服务器进 ...

  5. Sersync+Rsync实现数据文件实时同步

    rsync+inotify-tools与rsync+sersync架构的区别1,rsync+inotify-tools只能记录下被监听的目录发生的变化(增删改)并没有把具体变化的文件或目录记录下来在同 ...

  6. php第十五节课

    租房表 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3. ...

  7. STL中队列queue的用法

    头文件:#include <queue> 建立一个队列queue < 类型 > q 加入一个新的元素q.push(a) 询问队首元素q.front() 弹出队首元素q.pop( ...

  8. swap() 函数实现的方法

    swap()函数总结: 一.利用临时变量 1.引用(交换任意类型) template <typename T> void swap(T& x,T& y) { T tmp; ...

  9. BZOJ 1016 最小生成树计数 【模板】最小生成树计数

    [题解] 对于不同的最小生成树,每种权值的边使用的数量是一定的,每种权值的边的作用是确定的 我们可以先做一遍Kruskal,求出每种权值的边的使用数量num 再对于每种权值的边,2^num搜索出合法使 ...

  10. 用 console.time()和 console.timeEnd() 测试你的 javascript 代码执行效率

    无意中学习到了一种测试 javascript 代码执行效率的一种方法,就记下来便于以后使用,用到了console对象中的  time  和  timeEnd  方法 . console.time('m ...