可以看链接:https://blog.csdn.net/unixtch/article/details/78820654

1、import seaborn as sns

2、seaborn的主题风格(5种):如黑底、白底、要格子、不要格子等。sns.set_style("dark")

(1)sns.set():想使用seaborn默认样式可以采用set函数,

(2)seaborn预先定义了5中主题样式,以适合不同场景需要,分别是:darkgrid, whitegrid, dark, white, 和ticks,默认是darkgrid。

(3)sns.despine(left=True):默认值将上面和右边的轴去掉。然后left的轴也被隐藏起来了

sns.despine(offset=10):将图与轴之间距离设置10,即从10距离处才画图

(4)想要多个子图不同风格可以用  with sns.axes_style

plt.subplot(211)的风格为darkgrid,plt.subplot((212)不一样

with  sns.axes_style('darkgrid'):
plt.subplot(211)
plt.plot(x,y)
plt.show()
plt.subplot((212)
plt.plot(x,y)
plt.show()

3、seaborn的图样式(4种):sns.set_context("paper")

seaborn预定义了4种图表的样式定义,分别是:paper(小)、talk(大)、poster(较大)、notebook(更大),默认是notebook

(1)sns.set_context("notebook",font_scale=1.5,rc={"lines.linewidth":2.5})

轴的字体大小设置为1.5,线的宽度为2.5

4、调色板

(1)color_palette()能传入任何Matplotlib所支持的颜色,不写参数则默认颜色

(2)set_palette(),设置所有图的颜色。

(3)使用xkcd设置颜色命名:sns.skcd_rgb['名字']

5、分布图:

(1)绘制单变量的数据分布图:distplot()

①数据分布情况:sns.distlpot(x,kde=False,fit=stats.gamma)【fit参数使用了gamma分布拟合】

(2)散点图:sns.jointplot(x='x标签名字',y='y标签名字',data=df))【该函数可以把两个变量之间的散点图关系画出来,还会把自身的柱状图画出来】

(3)六边图:sns.jointplot(kind="hex"):该图可以看出数据量分布情况,常用在数据量较大的情况,颜色越深表示数据量多。

(4)回归分析图:变量之间两两分析   sns.pairplot(数据名)

柱状图为变量自身的分析,散点图为两两之间的。

replot()和Implot()都可以绘制回归关系,推荐使用replot()

sns.regplot(x="size", y="tip", data=tips, x_jitter=.05):x_jitter=.05将离散点(分类值)进行一个小范围的波动,更利于画回归图。

(5)多变量分析图:stripplot(x=' ',y=' ',data =df)

重叠解决办法:加上jitter=True,将数据偏一下,易于观察。

swarmplot

  • 与stripplot类似,只是数据点不会重叠 (适合小数据量)

(6)盒图:找离群点:sns.boxplot()

(7)小提琴图:violinplot()用于显示数据分布及其概率密度。

中间的黑色粗条表示四分位数范围,从其延伸的幼细黑线代表 95% 置信区间,而白点则为中位数。

 (8)柱状图:sns.barplot(x,y,hue,data)

countplot 计数图

countplot 故名思意,计数图,可将它认为一种应用到分类变量的直方图,也可认为它是用以比较类别间计数差,调用 count 函数的 barplot。

(9)点图:pointplot()点图可以更好的描述变化差异。

(10)多层面板分类图:factorplot()   可以通过这个函数绘制以上几种图

(11)热度图:heatmap():显示数据趋势,常用的方式是:画出特征与特征之间的相关系数,然后放入heatmap中画出趋势观察。

heatmap(annot=True,fmt='d')annot参数是在颜色重显示数据,fmt是数据显示的格式,一般添加上。有很多参数,可以参考notebook文档。

Python可视化数据------seaborn的更多相关文章

  1. Python可视化:Seaborn库热力图使用进阶

    前言 在日常工作中,经常可以见到各种各种精美的热力图,热力图的应用非常广泛,下面一起来学习下Python的Seaborn库中热力图(heatmap)如何来进行使用. 本次运行的环境为: windows ...

  2. Pycon 2017: Python可视化库大全

    本文首发于微信公众号“Python数据之道” 前言 本文主要摘录自 pycon 2017大会的一个演讲,同时结合自己的一些理解. pycon 2017的相关演讲主题是“The Python Visua ...

  3. Python统计分析可视化库seaborn(相关性图,变量分布图,箱线图等等)

    Visualization of seaborn  seaborn[1]是一个建立在matplot之上,可用于制作丰富和非常具有吸引力统计图形的Python库.Seaborn库旨在将可视化作为探索和理 ...

  4. 如何使用Python 进行数据可视化

    微信公众号:码农充电站pro 个人主页:https://codeshellme.github.io 在进行数据分析的时候,经常需要将数据进行可视化,以方便我们对数据的认识和理解. 0,Matplotl ...

  5. Matplotlib和Seaborn演示Python可视化

    数据可视化:就是使用图形图表等方式来呈现数据,图形图表能够高效清晰地表达数据包含的信息. Seaborn是基于matplotlib,在matplotlib的基础上进行了更高级的API封装,便于用户可以 ...

  6. 【转】Python——plot可视化数据,作业8

    Python——plot可视化数据,作业8(python programming) subject1k和subject1v的形状相同 # -*- coding: utf-8 -*- import sc ...

  7. [Python] Python 学习 - 可视化数据操作(一)

    Python 学习 - 可视化数据操作(一) GitHub:https://github.com/liqingwen2015/my_data_view 目录 折线图 散点图 随机漫步 骰子点数概率 文 ...

  8. python爬虫+数据可视化项目(关注、持续更新)

    python爬虫+数据可视化项目(一) 爬取目标:中国天气网(起始url:http://www.weather.com.cn/textFC/hb.shtml#) 爬取内容:全国实时温度最低的十个城市气 ...

  9. 数据挖掘(二)用python实现数据探索:汇总统计和可视化

    今天我们来讲一讲有关数据探索的问题.其实这个概念还蛮容易理解的,就是我们刚拿到数据之后对数据进行的一个探索的过程,旨在了解数据的属性与分布,发现数据一些明显的规律,这样的话一方面有助于我们进行数据预处 ...

随机推荐

  1. 【ZOJ 4060】Flippy Sequence

    [链接] 我是链接,点我呀:) [题意] [题解] 按照两个区间的排列方式 我们可以分成以下几种情况 会发现这两个区间的作用 最多只能把两段连续不同的区间变为相同. 那么写个for处理出连续不相同的一 ...

  2. C++ - 部分STL容器如何去除重复元素

    如果元素被保存在vector中,可先对vector里面的元素排序,然后调用unique函数去重,unique(起始迭代器,终止迭代器),返回的是去重以后vector中没有重复元素的下一个位置的迭代器. ...

  3. 【日常学习】【搜索/递归】codevs2802 二的幂次方题解

    转载请注明出处 [ametake版权全部]http://blog.csdn.net/ametake欢迎来看 题目描写叙述 Description 不论什么一个正整数都能够用2的幂次方表示. 比如:13 ...

  4. HDU 5046

    同样是二分+DLX即可. #include <iostream> #include <cstdio> #include <cstring> #include < ...

  5. CSDN日报20170416 ——《为什么程序猿话少钱多死得早?》

    [程序人生]为什么程序猿话少钱多死得早? 作者:文奇 我在想,程序猿都是话少吗?不一定吧.像我和我的同学.都是话非常多啊. 可是经历过非常多事的如今.再想想,发现事实的确如此.程序猿确实话少. 我是一 ...

  6. 【android】uses-permission和permission具体解释

    1.<uses-permission>: 官方描写叙述: If an application needs access to a feature protected by a permis ...

  7. iOS应用主流UI架构实现

    一.介绍 如今iOS开发过程中,最常见的一种UI架构是:界面底部是四五个tab bar .中间是内容显示.顶部是包括标题及返回等操作button,当点击进入某个模块后可以点击进行返回.这样的架构的应用 ...

  8. Memcache 和 Radis 比较

    Memcache 和 Radis 比较 2014-03-28 11:00 2447人阅读 评论(0) 收藏 举报  分类: memcache(6)  Redis(7)  版权声明:本文为博主原创文章, ...

  9. VIM中括号的自动补全与删除

    先放来源 http://oldj.net/article/vim-parenthesis/ 很多现代 IDE 都有自动补全配对括号的功能,比如输入了左括号“(”,IDE 就自动在后面添加一个对应的右括 ...

  10. 【POJ 2976】 Dropping Tests

    [题目链接] http://poj.org/problem?id=2976 [算法] 0/1分数规划 [代码] #include <algorithm> #include <bits ...