[poj2288] Islands and Bridges (状压dp)
Description
Given a map of islands and bridges that connect these islands, a Hamilton path, as we all know, is a path along the bridges such that it visits each island exactly once. On our map, there is also a positive integer value associated with each island. We call a Hamilton path the best triangular Hamilton path if it maximizes the value described below.
Suppose there are n islands. The value of a Hamilton path C1C2...Cn is calculated as the sum of three parts. Let Vi be the value for the island Ci. As the first part, we sum over all the Vi values for each island in the path. For the second part, for each edge CiCi+1 in the path, we add the product ViVi+1. And for the third part, whenever three consecutive islands CiCi+1Ci+2 in the path forms a triangle in the map, i.e. there is a bridge between Ci and Ci+2, we add the product ViVi+1*Vi+2.
Most likely but not necessarily, the best triangular Hamilton path you are going to find contains many triangles. It is quite possible that there might be more than one best triangular Hamilton paths; your second task is to find the number of such paths.
Input
The input file starts with a number q (q<=20) on the first line, which is the number of test cases. Each test case starts with a line with two integers n and m, which are the number of islands and the number of bridges in the map, respectively. The next line contains n positive integers, the i-th number being the Vi value of island i. Each value is no more than 100. The following m lines are in the form x y, which indicates there is a (two way) bridge between island x and island y. Islands are numbered from 1 to n. You may assume there will be no more than 13 islands.
Output
For each test case, output a line with two numbers, separated by a space. The first number is the maximum value of a best triangular Hamilton path; the second number should be the number of different best triangular Hamilton paths. If the test case does not contain a Hamilton path, the output must be `0 0'.
Note: A path may be written down in the reversed order. We still think it is the same path.
Sample Input
2
3 3
2 2 2
1 2
2 3
3 1
4 6
1 2 3 4
1 2
1 3
1 4
2 3
2 4
3 4
Sample Output
22 3
69 1
Solution
一看数据(13)就知道是状压。。。
分析题目发现需要知道前两个岛是什么,那就暴力枚举就好了
最后统计最大值与对应方案(方案数跟据题目要求要/2)
注意特判1qwq
Code
//By Menteur_Hxy
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define M(a,b) memset(a,(b),sizeof(a))
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
using namespace std;
typedef long long LL;
LL read() {
LL x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f; c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
}
int n,m;
int val[13],edg[13][13];
LL dp[1<<13][13][13],num[1<<13][13][13];
int main() {
int T=read();
while(T--) {
M(edg,0);M(dp,-1);M(num,0);
n=read(),m=read();
F(i,0,n-1) val[i]=read();
if(n==1) {printf("%d 1\n",val[0]);continue;}// WA*1
F(i,1,m) {int u=read()-1,v=read()-1;
edg[u][v]=edg[v][u]=1;
}
F(i,0,n-1) F(j,0,n-1) if(i!=j && edg[i][j])
dp[(1<<i)|(1<<j)][i][j]=val[i]+val[j]+val[i]*val[j],num[(1<<i)|(1<<j)][i][j]=1;
F(i,0,(1<<n)-1) F(j,0,n-1) if((1<<j)&i)
F(k,0,n-1) if(edg[j][k] && j!=k && (i&(1<<k)) && dp[i][j][k]!=-1)
F(x,0,n-1) if(edg[k][x] && k!=x && j!=x && !(i&(1<<x))) {
int tmp=dp[i][j][k]+val[x]+val[k]*val[x];
if(edg[j][x]) tmp+=val[j]*val[k]*val[x];
if(dp[i|(1<<x)][k][x]<tmp) {
dp[i|(1<<x)][k][x]=tmp;
num[i|(1<<x)][k][x]=num[i][j][k];
} else if(dp[i|(1<<x)][k][x]==tmp)
num[i|(1<<x)][k][x]+=num[i][j][k];
}
LL ans1=0,ans2=0;
F(i,0,n-1) F(j,0,n-1) if(i!=j && edg[i][j]) {
if(ans1<dp[(1<<n)-1][i][j]) ans1=dp[(1<<n)-1][i][j],ans2=num[(1<<n)-1][i][j];
else if(ans1==dp[(1<<n)-1][i][j]) ans2+=num[(1<<n)-1][i][j];
}
printf("%lld %lld\n",ans1,ans2>>1);
}
return 0;
}
[poj2288] Islands and Bridges (状压dp)的更多相关文章
- poj 2288 Islands and Bridges ——状压DP
题目:http://poj.org/problem?id=2288 状压挺明显的: 一开始写了(记忆化)搜索,但一直T: #include<iostream> #include<cs ...
- poj 2288 Islands and Bridges——状压dp(哈密尔顿回路)
题目:http://poj.org/problem?id=2288 不知为什么记忆化搜索就是WA得不得了! #include<iostream> #include<cstdio> ...
- Islands and Bridges(POJ2288+状压dp+Hamilton 回路)
题目链接:http://poj.org/problem?id=2288 题目: 题意:求Hamilton 路径权值的最大值,且求出有多少条权值这么大的Hamilton路径. 思路:状压dp,dp[i] ...
- CH0103最短Hamilton路径 & poj2288 Islands and Brigdes【状压DP】
虐狗宝典学习笔记: 取出整数\(n\)在二进制表示下的第\(k\)位 \((n >> ...
- 状压DP天秀
状压DP,依靠的是把状态用某种压缩方式表示出来进而DP,大多数时候是二进制状压. 直接看例题吧. 一双木棋 九尾狐吃棉花糖 islands and bridges 愤怒的小鸟 芯片 ...
- 状压dp之位运算
## 一.知识 1.我们知道计算机中数据由二进制数存储,一个二进制数的一位就是计算机中数据的最小单位bit,我们有一种运算符可直接对二进制数进行位运算,所以它的速度很快. 2.C++中的位运算符有6种 ...
- BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS
BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS Description Farmer John has taken the cows to a va ...
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
- nefu1109 游戏争霸赛(状压dp)
题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...
随机推荐
- codevs——T1267 老鼠的旅行
http://codevs.cn/problem/1267/ 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Descr ...
- sync_binlog=1
MySQL提供一个sync_binlog参数来控制数据库的binlog刷到磁盘上去. sync_binlog=0,表示MySQL不控制binlog的刷新,由文件系统自己控制它的缓存的刷新.这时候的性能 ...
- ul,li不能左右居中的问题
近期帮朋友做一个他们公司的商品站点,用到了曾经学到的html+css技术,当然做站点少不了Javascript和jquery这些..... 这个功能主要实现了导航条里面的条目是居中的.所以声明了ul, ...
- 简陋版:基于python的自动化测试框架开发
项目背景: XXXX银行项目采用的是B/S架构,主要是为了解决银行业务中的柜员.凭证.现金.账务等来自存款.贷款.会计模块的管理. 手工弊端: 1.项目业务复杂度高,回归测试工作量大2.单个接口功能比 ...
- F5设备控制脚本
此脚本用于控制F5设备,可对pool成员进行操作及成员状态,该脚本及源自于f5官网 使用格式: 1.查看pool成员状态 /usr/bin/perl /scripts/togglepoolmember ...
- 【转】什么是P问题、NP问题和NPC问题
原文链接:http://www.matrix67.com/blog/archives/105,感谢Matrix67,看完这篇文章终于把这个几个概念弄明白了!! 这或许是众多OIer最大的误区之一. ...
- Bootstrap 模态框使用
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- Oracle表的种类及定义
1表的类型 1)堆组织表(heap organized tables). 当增加数据时,将使用在段中找到的第一个适合数据大小的空闲空间.当数据从表中删除时,留下的空间允许随后的insert和updat ...
- APP开发中,如何从UI设计上提升APP用户体验
设计中有很多细微的东西要注意,就如UI设计中,元素的统一性,图标风格.段落的排版等等,只有能注意这些细节,你的 APP UI 才算合格. 干货君总结了17个提升用户体验的 UI 设计小技巧,也是我们日 ...
- TOF相机基本知识
TOF是Time of flight的简写,直译为飞行时间的意思.所谓飞行时间法3D成像,是通过给目标连续发送光脉冲,然后利用传感器接收从物体返回的光,通过探测光脉冲的飞行时间来得到目标物的距离.TO ...