Multi-process Architecture
Multi-process Architecture
This document describes Chromium's high-level architecture. ProblemIt's nearly impossible to build a rendering engine that never crashes or hangs. It's also nearly impossible to build a rendering engine that is perfectly secure. In some ways, the state of web browsers around 2006 was like that of the single-user, co-operatively multi-tasked operating systems of the past. As a misbehaving application in such an operating system could take down the entire system, so could a misbehaving web page in a web browser. All it took is one browser or plug-in bug to bring down the entire browser and all of the currently running tabs. Modern operating systems are more robust because they put applications into separate processes that are walled off from one another. A crash in one application generally does not impair other applications or the integrity of the operating system, and each user's access to other users' data is restricted. Architectural overviewWe use separate processes for browser tabs to protect the overall application from bugs and glitches in the rendering engine. We also restrict access from each rendering engine process to others and to the rest of the system. In some ways, this brings to web browsing the benefits that memory protection and access control brought to operating systems. We refer to the main process that runs the UI and manages tab and plugin processes as the "browser process" or "browser." Likewise, the tab-specific processes are called "render processes" or "renderers." The renderers use the Blink open-source layout engine for interpreting and laying out HTML. Managing render processesEach render process has a global Managing viewsEach render process has one or more Components and interfacesIn the render process:
In the browser process:
For more detailed information on how this embedding works, see the How Chromium displays web pages design document. Sharing the render processIn general, each new window or tab opens in a new process. The browser will spawn a new process and instruct it to create a single Sometimes it is necessary or desirable to share the render process between tabs or windows. A web application opens a new window that it expects to communicate with synchronously, for example, using window.open in JavaScript. In this case, when we create a new window or tab, we need to reuse the process that the window was opened with. We also have strategies to assign new tabs to existing processes if the total number of processes is too large, or if the user already has a process open navigated to that domain. These strategies are described in Process Models. Detecting crashed or misbehaving renderersEach IPC connection to a browser process watches the process handles. If these handles are signaled, the render process has crashed and the tabs are notified of the crash. For now, we show a "sad tab" screen that notifies the user that the renderer has crashed. The page can be reloaded by pressing the reload button or by starting a new navigation. When this happens, we notice that there is no process and create a new one. Sandboxing the rendererGiven the renderer is running in a separate process, we have the opportunity to restrict its access to system resources via sandboxing. For example, we can ensure that the renderer's only access to the network is via its parent browser process. Likewise, we can restrict its access to the filesystem using the host operating system's built-in permissions. In addition to restricting the renderer's access to the filesystem and network, we can also place limitations on its access to the user's display and related objects. We run each render process on a separate Windows "Desktop" which is not visible to the user. This prevents a compromised renderer from opening new windows or capturing keystrokes. Giving back memoryGiven renderers running in separate processes, it becomes straightforward to treat hidden tabs as lower priority. Normally, minimized processes on Windows have their memory automatically put into a pool of "available memory." In low-memory situations, Windows will swap this memory to disk before it swaps out higher-priority memory, helping to keep the user-visible programs more responsive. We can apply this same principle to hidden tabs. When a render process has no top-level tabs, we can release that process's "working set" size as a hint to the system to swap that memory out to disk first if necessary. Because we found that reducing the working set size also reduces tab switching performance when the user is switching between two tabs, we release this memory gradually. This means that if the user switches back to a recently used tab, that tab's memory is more likely to be paged in than less recently used tabs. Users with enough memory to run all their programs will not notice this process at all: Windows will only actually reclaim such data if it needs it, so there is no performance hit when there is ample memory. This helps us get a more optimal memory footprint in low-memory situations. The memory associated with seldom-used background tabs can get entirely swapped out while foreground tabs' data can be entirely loaded into memory. In contrast, a single-process browser will have all tabs' data randomly distributed in its memory, and it is impossible to separate the used and unused data so cleanly, wasting both memory and performance. Plug-ins and ExtensionsFirefox-style NPAPI plug-ins ran in their own process, separate from renderers. This is described in detail in Plugin Architecture. The Site Isolation project aims to provide more isolation between renderers, an early deliverable for this project includes running Chrome's HTML/JavaScript content extensions in isolated processes.
|
Multi-process Architecture的更多相关文章
- python multi process multi thread
muti thread: python threading: https://docs.python.org/2/library/threading.html#thread-objects https ...
- 6 Multi-Cloud Architecture Designs for an Effective Cloud
https://www.simform.com/multi-cloud-architecture/ Enterprises increasingly want to take advantage of ...
- Node.js进程管理之Process模块
在前面Node.js事件运行机制也有提到,Node.js应用在单个线程运行,但是现在大部分服务器都是多处理器,为了方便使用多个进程,Node.js提供了3个模块.Process模块提供了访问正在运行的 ...
- Flash: An Efficient and Portable Web Server
Introduction This paper presents the design of a new Web server architecture called the asymmetric m ...
- LIST OF NOSQL DATABASES [currently 150]
http://nosql-database.org Core NoSQL Systems: [Mostly originated out of a Web 2.0 need] Wide Column ...
- 谷歌浏览器使用IE内核
经常使用谷歌浏览器去到处溜达,可是,居然还不知道谷歌浏览的还有很多新鲜的设置,昨天遇到了调试一个脚本没有出现效果,而在IE中就可以显示所谓的效果: 查询了下,看到谷歌浏览器确实对脚本的部分样式要求还是 ...
- MySQL、MongoDB、Redis数据库Docker镜像制作
MySQL.MongoDB.Redis数据库Docker镜像制作 在多台主机上进行数据库部署时,如果使用传统的MySQL的交互式的安装方式将会重复很多遍.如果做成镜像,那么我们只需要make once ...
- python 多线程和多进程基本写法
#coding=utf-8 def aJob(arg): """ 提供给多线程调用 """ import threading t = thr ...
- Windows Server 2003 Sp2 下无法安装SQL Server 2008 Management Studio Express问题
Windows Server 2003 Sp2 下无法安装SQL Server 2008 Management Studio Express问题钉子 发表于 2010-5-22 1:42:51问题描述 ...
- Python标准库10 多进程初步 (multiprocessing包)
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们已经见过了使用subprocess包来创建子进程,但这个包有两个很大的局限性: ...
随机推荐
- Failed to initialize connector [Connector[HTTP/1.1-443]]
Failed to initialize connector [Connector[HTTP/1.1-443]] 出现如上错误时,是因为443端口被占用, 所以tomcat的https协议无法使用, ...
- 洛谷——P1455 搭配购买
https://www.luogu.org/problem/show?pid=1455 题目描述 明天就是母亲节了,电脑组的小朋友们在忙碌的课业之余挖空心思想着该送什么礼物来表达自己的心意呢?听说在某 ...
- 使用IR2101半桥驱动电机的案例
作为一个电机驱动开发方面的菜鸟,近日研究了一下通过MOS管对整流后的电源斩波用以驱动直流电机进行调速的方案. 在驱动的过程中,遇到了很多问题,当然也有很多的收获. 写下来以供自己将来查阅,也为其他菜鸟 ...
- Python: PS 滤镜--高反差保留 (High pass)
本文用 Python 实现 PS 滤镜中的 高反差保留 特效,具体的算法原理和图像效果可以参考之前的博客: http://blog.csdn.net/matrix_space/article/deta ...
- Python: PS 滤镜--碎片特效
本文用 Python 实现 PS 滤镜中的碎片特效,这个特效简单来说就是将图像在 上,下,左,右 四个方向做平移,然后将四个方向的平移的图像叠加起来做平均.具体的效果图可以参考之前的博客 http:/ ...
- android页面布局(listview填充中间)
<?xml version="1.0" encoding="utf-8"?> <RelativeLayout xmlns:android=&q ...
- springMVC中跳转问题
在使用SpringMVC时遇到了这个跳转的问题很头疼.现在总结出来,对以后的开发有所帮助. . 1.可以采用ModelAndView: @RequestMapping("test1" ...
- PostgreSQL Replication之第二章 理解PostgreSQL的事务日志(2)
2.2 XLOG和复制 在本章中,您已经了解到PostgreSQL的事务日志已经对数据库做了所有的更改.事务日志本身被打包为易用的16MB段. 使用这种更改集来复制数据的想法是不牵强的.事实上,这是在 ...
- asp.net网页播放MP4 出错
通过IIS进行添加:单击[开始]→[程序]→[管理工具]→[IIS管 理器],逐步展开“本地计算机”.“网站”,在你的网站上右击,选择[属性],单击“HTTP头”选项卡→单击“MIME类型”按钮,再单 ...
- Bayes++ Library入门学习之熟悉namespace
Bayes++是一个开源的C++类库.这些类表示并实现了用于离散系统的贝叶斯滤波的各种数值算法.该库中的类提供测试和一致的数值方法,并且用层次明确的结构表明了各种滤波算法和系统模型类型. 接下来,我们 ...