time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

A tree is an undirected connected graph without cycles.

Let’s consider a rooted undirected tree with n vertices, numbered 1 through n. There are many ways to represent such a tree. One way is to create an array with n integers p1, p2, …, pn, where pi denotes a parent of vertex i (here, for convenience a root is considered its own parent).



For this rooted tree the array p is [2, 3, 3, 2].

Given a sequence p1, p2, …, pn, one is able to restore a tree:

There must be exactly one index r that pr = r. A vertex r is a root of the tree.

For all other n - 1 vertices i, there is an edge between vertex i and vertex pi.

A sequence p1, p2, …, pn is called valid if the described procedure generates some (any) rooted tree. For example, for n = 3 sequences (1,2,2), (2,3,1) and (2,1,3) are not valid.

You are given a sequence a1, a2, …, an, not necessarily valid. Your task is to change the minimum number of elements, in order to get a valid sequence. Print the minimum number of changes and an example of a valid sequence after that number of changes. If there are many valid sequences achievable in the minimum number of changes, print any of them.

Input

The first line of the input contains an integer n (2 ≤ n ≤ 200 000) — the number of vertices in the tree.

The second line contains n integers a1, a2, …, an (1 ≤ ai ≤ n).

Output

In the first line print the minimum number of elements to change, in order to get a valid sequence.

In the second line, print any valid sequence possible to get from (a1, a2, …, an) in the minimum number of changes. If there are many such sequences, any of them will be accepted.

Examples

input

4

2 3 3 4

output

1

2 3 4 4

input

5

3 2 2 5 3

output

0

3 2 2 5 3

input

8

2 3 5 4 1 6 6 7

output

2

2 3 7 8 1 6 6 7

Note

In the first sample, it’s enough to change one element. In the provided output, a sequence represents a tree rooted in a vertex 4 (because p4 = 4), which you can see on the left drawing below. One of other correct solutions would be a sequence 2 3 3 2, representing a tree rooted in vertex 3 (right drawing below). On both drawings, roots are painted red.

In the second sample, the given sequence is already valid.

【题解】



题意:

要把多个子图、可能带环的图合并成一颗树;只有n条边.

做法:

先确定树的根节点是什么;

如果一开始给的数据里面没有fa[i]==i的情况。

那么就在各个子图里面的环里面找一个根节点(因为没有fa[i]==i,则必然是所有的子图都存在环),随便找一个就可以了。

然后把各个子图的环中的任意一个节点改一下,接到根节点上就可以了;

链怎么办?如果是链那么肯定会有fa[i]==i这样的数据的;

比如2 3 4 4

最后的fa[4]==4,这样才是一条链。

那么我们访问到4的时候,再访问fa[4]就又为4了。则把fa[4]改成树的根节点(我们的程序会认为这是一个环).一切都顺理成章~~

提供两张图供理解



#include <cstdio>
#include <iostream>
#include <cstring> using namespace std; const int MAXN = 2e5 + 100; int n, fa[MAXN],root = 0,vis[MAXN],cnt = 0,ans = 0;
bool rooted = false; void input(int &r)
{
r = 0;
char t = getchar();
while (!isdigit(t)) t = getchar();
while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
} void dfs(int x)
{
vis[x] = cnt;
if (vis[fa[x]] == cnt) {//出现了环
if (!rooted) {//如果之前还没找到一个根节点,那么这个节点作为根节点
rooted = true;
root = x;
}
fa[x] = root;
ans++;
return;
}
else
if (vis[fa[x]] != -1)
return;
dfs(fa[x]);
} int main()
{
//freopen("F:\\rush.txt", "r", stdin);
memset(vis, 255, sizeof(vis));
input(n);
for (int i = 1; i <= n; i++){
input(fa[i]);
if (fa[i] == i && !rooted){
rooted = true;
vis[i] = ++cnt;
root = i;
}
}
for (int i = 1; i <= n; i++)
if (vis[i] == -1) {
cnt++;
dfs(i);
}
printf("%d\n", ans);
for (int i = 1; i <= n; i++)
printf("%d%c", fa[i], (i == n ?'\n':' '));
return 0;
}

【27.48%】【codeforces 699D】 Fix a Tree的更多相关文章

  1. 【CodeForces 699D】Fix a Tree

    dfs找出联通块个数cnt,当形成环时,令指向已访问过节点的节点变成指向-1,即做一个标记.把它作为该联通图的根. 把所有联通的图变成一颗树,如果存在指向自己的点,那么它所在的联通块就是一个树(n-1 ...

  2. 【 BowWow and the Timetable CodeForces - 1204A 】【思维】

    题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...

  3. Codeforces Round #363 Fix a Tree(树 拓扑排序)

    先做拓扑排序,再bfs处理 #include<cstdio> #include<iostream> #include<cstdlib> #include<cs ...

  4. 【并查集】【模拟】Codeforces 698B & 699D Fix a Tree

    题目链接: http://codeforces.com/problemset/problem/698/B http://codeforces.com/problemset/problem/699/D ...

  5. 【27.91%】【codeforces 734E】Anton and Tree

    time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  6. 【51.27%】【codeforces 604A】Uncowed Forces

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  7. 【27.85%】【codeforces 743D】Chloe and pleasant prizes

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  8. 【27.66%】【codeforces 592D】Super M

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  9. 【27.40%】【codeforces 599D】Spongebob and Squares

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

随机推荐

  1. 电脑c盘清理

    https://www.cnblogs.com/btchenguang/archive/2012/01/20/2328320.html

  2. FZU Problem 2062 Suneast & Yayamao

    http://acm.fzu.edu.cn/problem.php?pid=2062 题目大意: 给你一个数n,要求求出用多少个数字可以表示1~n的所有数. 思路: 分解为二进制. 对于一个数n,看它 ...

  3. shell脚本一键安装mysql5.7.x

    使用脚本一键安装mysql5.7.x,初始化数据库.启动数据库---- mysql版本号:源代码mysql5.7.10 linux版本号:centos6.5 x86_64 #!/bin/bash GR ...

  4. swift项目第九天:正则表达式的学习

    import UIKit /* 练习1:匹配abc 练习2:包含一个a~z,后面必须是0~9 -->[a-z][0-9]或者[a-z]\d * [a-z] : a~z * [0-9]/\d : ...

  5. 搭建MHA问题汇总

    1,Can't exec "mysqlbinlog": No such file or directory at /usr/share/perl5/vendor_perl/MHA/ ...

  6. OpenExeConfiguration的使用

    //应用程序的路径 string appPath = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "App.exe"); ...

  7. matplotlib学习之函数积分图

    # coding:utf-8 import numpy as np from matplotlib import pyplot as plt from matplotlib.patches impor ...

  8. FOJ (FZU) 1476 矩形的个数 排列组合。

    http://acm.fzu.edu.cn/problem.php?pid=1476  Problem Description 在一个3*2的矩形中,可以找到6个1*1的矩形,4个2*1的矩形3个1* ...

  9. [Elm] Functions in Elm

    Functions are an important building block in Elm. In this lesson we will review stateless functions, ...

  10. ios开发多线程一:了解-NSOperation的基本使用

    #import "ViewController.h" @interface ViewController () @end @implementation ViewControlle ...