数据仓库工具:Hive
转载请标明出处:
http://blog.csdn.net/zwto1/article/details/46430823;
本文出自:【明月的博客】
为什么要选择Hive
基于Hadoop的大数据的计算/扩展能力
支持SQL like查询语言
统一的元数据管理
简单编程
Hive:
Hive 能够对数据进行管理和查询。
在hadoop生态圈中属于数据仓库的角色。他能够管理hadoop中的数据,同一时候能够查询hadoop中的数据。
本质上讲,hive是一个SQL解析引擎。Hive能够把SQL查询转换为MapReduce中的job来运行。
hive有一套映射工具,能够把SQL转换为MapReduce中的job。能够把SQL中的表、字段转换为HDFS中的文件(夹)以及文件里的列。
这套映射工具称之为metastore。一般存放在derby、mysql中。
Hive在hdfs中的默认位置是/user/hive/warehouse ,是由配置文件hive-conf.xml中属性hive.metastore.warehouse.dir决定的
Derby 数据库在哪里运行hive 就会在哪里创建。这就说明不能在不同的地方运行,运行要用相同的数据库。Derby数据库仅仅同意一个client打开。
Hive的体系结构:
用户接口主要有三个:CTL。JDBC/ODBC和WebGUI
CTL。即shell命令行
JDBC/ODBC是hive的java,与使用传统数据库JDBC的方式相似
WebGUI是用过浏览器訪问Hive.
Hive将元数据存储在数据库中(metastore),眼下仅仅支持mysqk、derby。
Hive中的元数据包括表的名字,表的列和分区及其属性,表的属性是否为外部表等。表的数据所在文件夹等。
解释器、编译器、优化器完毕HQL查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在HDFS中 。并在随后有MapReduce调用运行。
Hive的数据存储在HDFS中,大部分的查询由MapReduce完毕(包括的查询,像select from table不会生成MapReduce任务)
Hive安装
(1) 解压缩、重命名、环境变量设置
(2) 在文件夹 $HIVE_HOME/conf/下。运行命令
mv hive-default.xml.template hive-site.xml 重命名
在文件夹$HIVE_HOME/conf/下,运行命令
mv hive-env.sh.template hive-env.sh重命名
(3)改动hadoop的配置文件hadoop-env.sh。改动内容例如以下:
export HADOOP_CLASSPATH=.
:$$CLASSPATH:$HADOOP_CLASSPATH:$HADOOP_HOME/bin
否则启动hive会报找不到类的错误
注意:=右边多了个$,使用时去掉。因为markdown对美元符号处理。会使内容出现故障,所以多加了一个美元符号为了使内容正常显示。
(4)在文件夹$HIVE_HOME/bin以下,改动文件hive-config.sh,添加以下内容:
export JAVA_HOME=/usr/local/jdk
export HIVE_HOME=/usr/local/hive
export HADOOP_HOME=/usr/local/Hadoop
生产中,我们一般用MySQL。不用derby数据库存放metastore.
安装mysql
查看机器是否安了MySQL
rpm -qa | grep mysql
假设存在删除:
rpm -e mysql-libs-5.1.66-2.el6_3.i686
存在依赖能够强制删除
rpm -e mysql-libs-5.1.66-2.el6_3.i686 –nodeps
(1)删除linux上已经安装的mysql相关库信息。
rpm -e xxxxxxx –nodeps
运行命令
rpm -qa |grep mysql
检查是否删除干净
(2)运行命令
rpm -i mysql-server-**
安装mysql服务端
(3)启动mysql 服务端,运行命令
mysqld_safe &
(4)运行命令
rpm -i mysql-client-**
安装mysqlclient
(5)运行命令
mysql_secure_installation
设置root用户password
(6)登陆MySQL。
mydsql -uroot -padmin
使用mysql作为hive的metastore
(1)把mysql的jdbc驱动放置到hive的lib文件夹下
(2)改动hive-site.xml文件,改动内容例如以下:
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://hadoop:3306/hive?createDatabaseIfNotExist=true</value>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>admin</value>
</property>
Mysql 不同意远程连接,怎样让其远程连接:
授权全部权限在hive表上给root用户(不论什么地方的root)。password是admin。
grant all on hive.* to ‘root’@’%’ identified by ‘admin’;
之后刷新下:
flush privileges;
内部表
CREATE TABLE t1(id int);
Hive 里没有insert 操作。插入数据方法例如以下:
LOAD DATA LOCAL INPATH ‘/root/id’ INTO TABLE t1;
这样的方式跟hadoop fs –put 命令的方式都能够载入数据。hive 查询识别。
假设去掉local,载入的数据是从hdfs 里载入的。
CREATE TABLE t2(id int, name string) ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘\t’;
通过制表符区分字段。
分区表
分区表就是依照不同的字段把文件划分为不同的标准。
CREATE TABLE t3(id int) PARTITIONED BY (day int);
LOAD DATA LOCAL INPATH ‘/root/id’ INTO TABLE t3 PARTITION (day=22);
多了一个文件夹,我们能够依照每天的方式来载入数据。
查的话:
select * from t3 where day=22;
桶表
桶表不经常使用。
create table t4(id int) clustered by(id) into 4 buckets;
set hive.enforce.bucketing = true;
insert into table t4 select id from t3;
用桶表载入数据要经过MapReduce 计算,不能用load data 方式载入。
值通过哈希编码分到不同的桶中。
分到同一桶中的数据非常可能相同。
使用场景:作表连接的时候用。
使用文件进行划分,这点与分区表通过文件夹划分不同。
外部表
create external table t5(id int) location ‘/external’;
drop table t5;
优点:删除的时候仅仅删除表定义。数据本身不删除。
前面三个表是受控表。Drop 表时 数据就不存在了。
其它
视图:
跟普通sql 没有什么差别,视图能够屏蔽掉复杂的操作,还能够进行权限的控制,表的操作。
视图创建:
CREATE VIEW v1 AS select * from t1;
表的操作:
表的改动:
alter table target_tab add columns(cols,string)
表的删除:
drop table
Hive 里能够使用limit 操作:
select * from t1 limit 5;
返回5行记录。
ORDER BY 是全部的数据都送到一个reduce 里进行去全排序。
SORT BY col_list 是多个reduce 运行,在每一个reduce 内部进行排序。
DISTRIBUTE BY col_list 把数据分成不同的区发给不同的reduce 去运行。
CLUSTER BY col_list将两种操作合并到一起,相当于sort by 和distribute by一起操作。
表连接:
Java client
Hive 能够编写java程序訪问,訪问时要先启动hive 远程服务:
hive - -service hiveserver >/dev/null 2>/dev/null &
在eclipe 里添加hive jar 包 也必须有hadoop jar包 否则运行不成功
package hive;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
public class App {
public static void main(String[] args) throws Exception {
Class.forName("org.apache.hadoop.hive.jdbc.HiveDriver");
Connection con = DriverManager.getConnection("jdbc:hive://hadoop:10000/default","","");
Statement stmt = con.createStatement();
String sql = "SELECT * FROM default.t1";
ResultSet res = stmt.executeQuery(sql);
while(res.next()){
System.out.println(res.getInt(1));
}
}
}
Tab键会把关键字显示出来 ,里面带小括号的表示函数
显示全部的函数:
show functions;
函数怎么用,能够:
describe function pi;
查看详细函数的操作。
这里我们统计id的和 ,使用sum函数
select sum(id) from t1;
数据仓库工具:Hive的更多相关文章
- (第7篇)灵活易用易维护的hadoop数据仓库工具——Hive
摘要: Hive灵活易用且易于维护,十分适合数据仓库的统计分析,什么样的结构让它具备这些特性?我们如何才能灵活操作hive呢? 博主福利 给大家推荐一套hadoop视频课程 [百度hadoop核心架构 ...
- 基于hadoop的数据仓库工具:Hive概述
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行.其优点是学习成本低,可以通过类 ...
- Hive数据仓库工具安装
一.Hive介绍 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单SQL查询功能,SQL语句转换为MapReduce任务进行运行. 优点是可以通过类S ...
- Hive和SparkSQL:基于 Hadoop 的数据仓库工具
Hive 前言 Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的 SQL 查询功能,将类 SQL 语句转换为 MapReduce 任务执行. ...
- Hive和SparkSQL: 基于 Hadoop 的数据仓库工具
Hive: 基于 Hadoop 的数据仓库工具 前言 Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的 SQL 查询功能,将类 SQL 语句转 ...
- Hive:数据仓库工具,由Facebook贡献。
Hadoop Common: 在0.20及以前的版本中,包含HDFS.MapReduce和其他项目公共内容,从0.21开始HDFS和MapReduce被分离为独立的子项目,其余内容为Hadoop Co ...
- 杂项:hive(数据仓库工具)
ylbtech-杂项:hive(数据仓库工具) hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapRedu ...
- Hive数据仓库工具基本架构和入门部署详解
@ 目录 概述 定义 本质 特点 Hive与Hadoop关系 Hive与关系型数据库区别 优缺点 其他说明 架构 组成部分 数据模型(Hive数据组织形式) Metastore(元数据) Compil ...
- HIVE---基于Hadoop的数据仓库工具讲解
Hadoop: Hadoop是一个由Apache基金会所开发的分布式系统基础架构.用来开发分布式程序.充分利用集群的威力进行高速运算和存储.Hadoop实现了一个分布式文件系统(Hadoop Dist ...
- 【Hadoop离线基础总结】数据仓库和hive的基本概念
数据仓库和Hive的基本概念 数据仓库 概述 数据仓库英文全称为 Data Warehouse,一般简称为DW.主要目的是构建面向分析的集成化数据环境,主要职责是对仓库中的数据进行分析,支持我们做决策 ...
随机推荐
- HDU 2874 LCA离线算法 tarjan算法
给出N个点,M条边.Q次询问 Q次询问每两点之间的最短距离 典型LCA 问题 Marjan算法解 #include "stdio.h" #include "strin ...
- win32 Service memory leak
https://stackoverflow.com/questions/2728578/how-to-get-phyiscal-path-of-windows-service-using-net ht ...
- Swift - 获取应用名称、应用版本、设备型号、系统版本等信息
有时我们在 App 中提交一些统计信息或者用户反馈信息时,为了能更好地进行分析,通常会附带上当前应用程序的名称.版本号.设备型号.以及设备系统版本.下面演示如何获取这些信息. 1,效果图 程序启动后自 ...
- hdoj--1251--统计难题(字典树)
统计难题 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131070/65535 K (Java/Others) Total Subm ...
- Regexp-Utils:基本
ylbtech-Regexp-Utils:基本 1.返回顶部 1. /** * 管理 */ var utils = { hostUrl: "http://localhost:8023&quo ...
- Hadoop 三剑客之 —— 分布式文件存储系统 HDFS
一.介绍 二.HDFS 设计原理 2.1 HDFS 架构 2.2 文件系统命名空间 2.3 数据复制 2.4 数据复制的实现原理 2.5 副本的选择 2 ...
- c/c++ 比较好的开源框架
作者:EZLippi链接:https://www.zhihu.com/question/19823234/answer/31632919来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转 ...
- 将maven项目中依赖的jar包导出到指定的目录
<plugin> <artifactId>maven-dependency-plugin</artifactId> <configuration> &l ...
- SQLiteHelp
using System; using System.Collections.Generic; using System.Text; using System.Data.SQLite; using S ...
- line-height与间距总总
一点说明(个人吐槽,可以略过) 之所以想写这篇文章,是因为自己工作的经验总结.以前的页面编写极度不注重间距大小,特别是行级元素间距.认为只要差不多好就行了,没必要花那么大的精力去抠几px的小细节.事实 ...