POJ 1737 Connected Graph (大数+递推)
题目链接:
http://poj.org/problem?id=1737
题意:
求 \(n\) 个点的无向简单(无重边无自环)连通图的个数。\((n<=50)\)
题解:
这题你甚至能OEIS。
http://oeis.org/A001187
但不支持这样做。TAT
间接做。
总方案数减去不合法方案。
因为\(n\)个点的完全图有 \(C(n,2)={n(n-1) \over 2}\) 条边,显然就有 \(2^{C(n,2)}\) 种子图,即枚举每条边是否选择。
设$ f[i]$ 表示每个点都和点 \(1\) 相连的连通图的个数 。
假设\(1\) 号点所在的连通块大小为 \(i\)。那么和 \(1\) 连通的这 \(i−1\) 个点就有 \(C(n-1,i-1)\) ,方案数则为:\(C(n-1,i-1)*f[i]\)。
然后其它 \(n−i\) 个点间任意连边即可,这时方案数为 \(2^{C(n-i,2)}\)。
综上,则存在递推式:
$$f[n]=2{C(n,2)}-\sum_{i=1}{n-1}f[i]C(n-1,i-1)2^{C(n-i,2)}$$
答案就是\(f[n]\)。
然后就套个大数板子。额...过世OJ好像不支持c++11。懒得改了,虽然不过,但代码是正确的。QAQ
代码:
#include <iostream>
#include <vector>
#include <cmath>
#include <complex>
#include <cstring>
#include <stdlib.h>
#include <string.h>
using namespace std;
typedef long long LL;
const double PI = acos(-1);
void rader(vector<complex<double> >& y) {
int len = y.size();
int i, j, k;
for (i = 1, j = len / 2; i < len - 1; i++) {
if (i < j) swap(y[i], y[j]);
k = len / 2;
while (j >= k) {
j -= k;
k /= 2;
}
if (j < k) j += k;
}
}
void fft(vector<complex<double> >& y, int on) {
int len = y.size();
rader(y);
for (int h = 2; h <= len; h <<= 1) {
complex<double> wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
for (int j = 0; j < len; j += h) {
complex<double> w(1, 0);
for (int k = j; k < j + h / 2; k++) {
complex<double> u = y[k];
complex<double> t = w * y[k + h / 2];
y[k] = u + t;
y[k + h / 2] = u - t;
w = w * wn;
}
}
}
if (on == -1) for (auto& i : y) i.real(i.real() / len);
}
class BigInt {
private:
string num;
string sign;
public:
const string to_string() const {
if (this->sign == "-") return this->sign + this->num;
else return this->num;
}
const LL toll() { return stoll(this->to_string()); }
const int toi() { return stoi(this->to_string()); }
BigInt() : num("0"), sign("+") {}
BigInt(const int t) {
if (t < 0) {
this->num = std::to_string(-t);
this->sign = "-";
} else {
this->num = std::to_string(t);
this->sign = "+";
}
}
BigInt(const LL t) {
if (t < 0) {
this->num = std::to_string(-t);
this->sign = "-";
} else {
this->num = std::to_string(t);
this->sign = "+";
}
}
BigInt(const string& t) {
if (t[0] == '-') {
this->num = t.substr(1);
this->sign = "-";
} else {
this->num = t;
this->sign = "+";
}
int flag = 0;
while (flag < (int)this->num.length() - 1 && this->num[flag] == '0') flag++;
this->num = this->num.substr(flag);
}
BigInt(char* const t) : BigInt(string(t)) {}
friend bool operator< (const BigInt& t, const BigInt& s) {
if (t.sign != s.sign) {
if (t.sign == "-") return true;
else return false;
} else {
if (t.sign == "-") {
if (t.num.length() == s.num.length()) {
return t.num > s.num;
} else {
return t.num.length() > s.num.length();
}
} else {
if (t.num.length() == s.num.length()) {
return t.num < s.num;
} else {
return t.num.length() < s.num.length();
}
}
}
}
friend bool operator> (const BigInt& t, const BigInt& s) {
return s < t;
}
friend bool operator== (const BigInt& t, const BigInt& s) {
return t.num == s.num && t.sign == s.sign;
}
friend bool operator!= (const BigInt& t, const BigInt& s) {
return !(t == s);
}
friend bool operator<= (const BigInt& t, const BigInt& s) {
return t == s || t < s;
}
friend bool operator>= (const BigInt& t, const BigInt& s) {
return t == s || t > s;
}
friend const BigInt abs(const BigInt& t) {
BigInt ans = t;
if (ans.sign == "-") ans.sign = "+";
return ans;
}
friend const BigInt operator- (const BigInt& t) {
BigInt ans = t;
if (ans.sign == "-") ans.sign = "+";
else ans.sign = "-";
return ans;
}
friend istream& operator>> (istream& in, BigInt& t) {
string s;
in >> s;
t = s;
return in;
}
friend ostream& operator<< (ostream& out, const BigInt& t) {
out << t.to_string();
return out;
}
friend const BigInt operator+ (const BigInt& t, const BigInt& s) {
BigInt ans, sub;
if (t.num.length() < s.num.length()) {
ans = s;
sub = t;
} else if (t.num.length() == s.num.length()) {
if (t.num < s.num) {
ans = s;
sub = t;
} else {
ans = t;
sub = s;
}
} else {
ans = t;
sub = s;
}
int sub_l = sub.num.length();
int ans_l = ans.num.length();
if (t.sign == s.sign) {
for (int i = 1; i <= sub_l; i++) {
ans.num[ans_l - i] += sub.num[sub_l - i] - '0';
}
int flag = 0;
for (int i = 1; i <= ans_l; i++) {
if (ans.num[ans_l - i] > '9') {
ans.num[ans_l - i] -= 10;
if (i == ans_l) {
flag = 1;
} else {
ans.num[ans_l - i - 1] += 1;
}
} else if (i >= sub_l) {
break;
}
}
if (flag) ans.num = "1" + ans.num;
} else {
for (int i = 1; i <= sub_l; i++) {
ans.num[ans_l - i] -= sub.num[sub_l - i] - '0';
}
for (int i = 1; i <= ans_l; i++) {
if (ans.num[ans_l - i] < '0') {
ans.num[ans_l - i] += 10;
ans.num[ans_l - i - 1] -= 1;
} else if (i >= sub_l) {
break;
}
}
int flag = 0;
while (flag < ans_l - 1 && ans.num[flag] == '0') flag++;
ans.num = ans.num.substr(flag);
if (ans.num == "0") ans.sign = "+";
}
return ans;
}
friend const BigInt operator- (const BigInt& t, const BigInt& s) {
BigInt sub = s;
if (sub.sign == "+") sub.sign = "-";
else sub.sign = "+";
return t + sub;
}
friend const BigInt operator* (const BigInt& t, const BigInt& s) {
BigInt res;
if (s.sign == t.sign) res.sign = "+";
else res.sign = "-";
vector<complex<double> > x1, x2;
vector<int> sum;
string str1 = t.num, str2 = s.num;
int len1 = str1.length();
int len2 = str2.length();
int len = 1;
while (len < len1 * 2 || len < len2 * 2) len <<= 1;
for (int i = 0; i < len1; i++) {
x1.push_back(complex<double>(str1[len1 - 1 - i] - '0', 0));
}
for (int i = len1; i < len; i++) {
x1.push_back(complex<double>(0, 0));
}
for (int i = 0; i < len2; i++) {
x2.push_back(complex<double>(str2[len2 - 1 -i] - '0', 0));
}
for (int i = len2; i < len; i++) {
x2.push_back(complex<double>(0, 0));
}
fft(x1, 1);
fft(x2, 1);
for (int i = 0; i < len; i++) x1[i] = x1[i] * x2[i];
fft(x1, -1);
for (auto& i : x1) sum.push_back((int)(i.real() + 0.5));
for (int i = 0; i < len; i++) {
sum[i + 1] += sum[i] / 10;
sum[i] %= 10;
}
len = len1 + len2 - 1;
while (sum[len] <= 0 && len > 0) len--;
res.num = "";
for (int i = len; i >= 0; i--) res.num += sum[i] + '0';
if (res.num == "0") res.sign = "+";
return res;
}
friend const BigInt operator/ (const BigInt& t, const BigInt& s) {
if (s == 0) throw;
BigInt res;
if (s.sign == t.sign) res.sign = "+";
else res.sign = "-";
BigInt sub = abs(t), ans = abs(s);
int w = sub.num.length() - ans.num.length();
for (int i = 0; i < w; i++) ans.num += "0";
while (w >= 0) {
int d = 0;
while (ans <= sub) {
sub -= ans;
d++;
}
res.num += d + '0';
ans.num = ans.num.substr(0, ans.num.length() - 1);
w--;
}
int flag = 0;
while (flag < (int)res.num.length() - 1 && res.num[flag] == '0') flag++;
res.num = res.num.substr(flag);
if (res.num == "0") res.sign = "+";
return res;
}
friend const BigInt operator% (const BigInt& t, const BigInt& s) {
if (s == 0) throw;
BigInt sub = abs(t), ans = abs(s);
int w = sub.num.length() - ans.num.length();
for (int i = 0; i < w; i++) ans.num += "0";
while (w >= 0) {
int d = 0;
while (ans <= sub) {
sub -= ans;
d++;
}
w--;
ans.num = ans.num.substr(0, ans.num.length() - 1);
}
sub.sign = t.sign;
if (sub.num == "0") sub.sign = "+";
return sub;
}
friend BigInt& operator+= (BigInt& t, const BigInt& s) {
return t = t + s;
}
friend BigInt& operator-= (BigInt& t, const BigInt& s) {
return t = t - s;
}
friend BigInt& operator*= (BigInt& t, const BigInt& s) {
return t = t * s;
}
friend BigInt& operator/= (BigInt& t, const BigInt& s) {
return t = t / s;
}
friend BigInt& operator%= (BigInt& t, const BigInt& s) {
return t = t % s;
}
const BigInt subnum(int r, int l) {
BigInt ans = this->num.substr(this->num.length() - l, l - r);
ans.sign = this->sign;
return ans;
}
const BigInt subnum(int l) {
return this->subnum(0, l);
}
};
BigInt dp[110][110];
void init()
{
dp[0][0] = 1;
for(int i = 1; i <= 51; i++) {
dp[i][0] = 1;
for(int j = 1; j <= i; j++) {
dp[i][j] = dp[i - 1][j] + dp[i - 1][j - 1];
}
}
}
BigInt expo[2000];
BigInt f[52];
int main(int argc, char const *argv[]) {
init();
int n;
expo[0] = 1;
for(long long i = 1; i <= 1250; i++) {
expo[i] = 2LL * expo[i - 1];
}
f[1] = 1;
f[2] = 1;
while(std::cin >> n) {
if(n == 0) break;
if(n <= 2) {
std::cout << "1" << '\n';
continue;
}
BigInt tmp = 0;
for(int i = 3; i <= n; i++) {
BigInt tot = expo[(i * (i - 1) >> 1)];
// std::cout << "tot = " << tot << '\n';
for(int j = 1; j <= i - 1; j++) {
tot = tot - f[j] * dp[i - 1][j - 1] * expo[((i - j) * ((i - j) - 1)) >> 1];
}
f[i] = tot;
}
std::cout << f[n] << '\n';
}
return 0;
}
POJ 1737 Connected Graph (大数+递推)的更多相关文章
- poj 1737 Connected Graph
// poj 1737 Connected Graph // // 题目大意: // // 带标号的连通分量计数 // // 解题思路: // // 设f(n)为连通图的数量,g(n)为非连通图的数量 ...
- POJ 1737 Connected Graph 题解(未完成)
Connected Graph Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3156 Accepted: 1533 D ...
- POJ 1737 Connected Graph(高精度+DP递推)
题面 \(solution:\) 首先做个推销:带负数的压位高精度(加减乘+读写) 然后:由 \(N\) 个节点组成的无向图的总数为: \(2^{N*(N-1)/2}\) (也就是说这个图总共有 \( ...
- poj 3744 Scout YYF I(递推求期望)
poj 3744 Scout YYF I(递推求期望) 题链 题意:给出n个坑,一个人可能以p的概率一步一步地走,或者以1-p的概率跳过前面一步,问这个人安全通过的概率 解法: 递推式: 对于每个坑, ...
- HDU-1041-Computer Transformation,大数递推,水过~~
Computer Transformatio ...
- POJ 1664 放苹果 (递推思想)
原题链接:http://poj.org/problem?id=1664 思路:苹果m个,盘子n个.假设 f ( m , n ) 代表 m 个苹果,n个盘子有 f ( m , n ) 种放法. 根据 n ...
- 【POJ】2229 Sumsets(递推)
Sumsets Time Limit: 2000MS Memory Limit: 200000K Total Submissions: 20315 Accepted: 7930 Descrip ...
- POJ 3734 Blocks (线性递推)
定义ai表示红色和绿色方块中方块数为偶数的颜色有i个,i = 0,1,2. aij表示刷到第j个方块时的方案数,这是一个线性递推关系. 可以构造递推矩阵A,用矩阵快速幂求解. /*********** ...
- POJ 3046 Ant Counting(递推,和号优化)
计数类的问题,要求不重复,把每种物品单独考虑. 将和号递推可以把转移优化O(1). f[i = 第i种物品][j = 总数量为j] = 方案数 f[i][j] = sigma{f[i-1][j-k], ...
随机推荐
- 洛谷 P1769 淘汰赛制_NOI导刊2010提高(01)
P1769 淘汰赛制_NOI导刊2010提高(01) 题目描述 淘汰赛制是一种极其残酷的比赛制度.2n名选手分别标号1,2,3,…,2^n-1,2^n,他们将要参加n轮的激烈角逐.每一轮中,将所有参加 ...
- bug14052601
AppDelegate.obj : error LNK2019: 无法解析的外部符号 "public: __thiscall cocos2d::ui::Margin::Margin(void ...
- SOAPUI使用
简介:在开发接口的时候每次验证接口是否正确都需要手动写测试DEMO来验证,使用SOAPUI可以大大减少测试时间. 目录 1.SOPUI介绍... 1 2.SOAPUI使用... 1 2.1新建SOAP ...
- 《读书报告 – Elasticsearch入门 》----Part II 深入搜索(1)
Part II 深入搜索 搜索不仅仅是全文本搜索:数据的很大部分是结构化的值例如日期.数字.这部分开始解释怎样以一种高效地方式结合结构化搜索和全文本搜索. 第十二章 结构化搜索 结构化搜索_ 是指查询 ...
- java.beans.PropertyChangeListener
import java.beans.PropertyChangeEvent; import java.beans.PropertyChangeListener; import java.beans.P ...
- Right turn(四川省第七届)
Right turn Time Limit: 1000ms Memory Limit: 65536KB 64-bit integer IO format: %lld Java class n ...
- Deepin for Linux 下串口调试交换机
最近因工作需要,在淘宝购买了一条宇泰的串口线:USB to RS232 之所以选择这款,主要是它支持 Windows.Linux.mac Linux机是Deepin for Linux,算是国产比较好 ...
- Idea下mybatis的错误—Module not specified
IDEA下使用maven的mybatis常见错误 错误类型一:导入项目引起的错误Module not specified 错误提示:idea Error Module not specified. 错 ...
- rev---将文件中的每行内容以字符为单位反序输出
rev命令将文件中的每行内容以字符为单位反序输出,即第一个字符最后输出,最后一个字符最先输出,依次类推.
- 【Henu ACM Round#18 E】Anya and Cubes
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 每个数字有3种选择. 1.选中它. 2.选中它且加阶乘符号 3.不选中它(即计算和的时候不考虑它) 如果我们直接暴力写的话复杂度是\ ...