[acmi 2015]Image based Static Facial Expression Recognition with Multiple Deep Network Learning

ABSTRACT

该文章作者为EmotiW2015比赛静态表情识别的亚军,采用的方法为cnn的级联,人脸检测方面也采用了当时3种算法的共同检测,
通过在FER2013数据库上进行模型预训练,并在SFEW2.0(比赛数据)上fine-tune,从而在比赛的验证集和测试集上取得55.96%和61.29%
的准确率,远远超过比赛的baseline(35.96%,39.13%)。
作者本文主要贡献如下:

  • 1.实现了CNN架构,在表情识别方面性能卓越。
  • 2.提出了一种数据增强和投票模式,应有提高CNN的性能。
  • 3.提出了一种优化方法自动的决定级联CNN的权重分配问题。

FaceDetection

由于SFEW数据库给出的静态图像,背景非常复杂,同时为了后续的CNN表情分类,人脸的检测与对齐是非常重要的,因此作者级联了三个state-of-the-art
的人脸检测算法,从而保证人脸检测的正确性.三种检测算法为(JDA,DCNN,MoT),图像事先resize为1024x576.总共帧为372,实验结果如下表所示:

Method JDA DCNN MoT JDA+DCNN JDA+DCNN+MoT
Det # 333 358 352 363 371

FacePreprocessing

数据预处理对后续的识别有极大的影响,良好的数据预处理可以去除样本间的无关噪声,并能够一定程度的做到数据增强。图像尺寸归一化(48x48)
直方图均衡化,去均值除方差。
样本扩增(论文5.2),由于FER数据库包含35000+的图片,因此作者采用fer数据库进行预训练,作者对数据进行了随机的旋转,从而生成了更多的样本,使得网络训练的结果更具有鲁棒性。,样本生成公式以及效果图如下图所示:



\[ 样本添加扰动后生成的图样与原始图样的对比 \]

CNNModel

基本网络结构

5个conv+relu(step:1),3个stochastic pooling层(kernel_size:3*3,step:2),3个全连接层次(带relu+dropout)+softmax,随机初始化参数.
采用sgd优化方式,batch_size:128.

\[ CNN网络结构图 \]

损失函数与级联思想

损失函数为softmaxWithLoss,只不过计算的时候一个样本会与其生成的样本loss一起计算,整个网络用FER数据库进行预训练(base_lr:0.005),当loss突然增加25%或者连续5次观察loss发现loss上升,则手动的减小学习率,最小的学习率设置为0.0001.
由于随机初始化参数,因此作者测试的时候,对多个网络进行级联,从而提高测试的准确率.

\[ 测试时级联CNN网络结构图 \]
相比较简单的加权投票平均的思想,作者认为可以通过学习策略,来决定网络的具体权重。所以提出了一个级联的似然函数,实际可以理解为根据各个网络的输出去学习一个全连接层.其中||w|| == 1.

实验结果

作者分别列出了在FER,SFEW上数据库的单独训练结果以及,采用提升的级联方式对最终结果的提高。

\[ FER数据集train \, val结果 \]

\[ FER数据集不同Loss与级联方式的结果 \]

\[ SFEW数据集Vote \, No Vote的结果 \]

\[ SFEW数据集不同Loss与级联方式的结果 \]

\[ SFEW数据库上的测试混淆矩阵 \]

结论

预训练+提升的级联方式对最终的识别效果有效。同时,样本扩增对实验提升也是有作用的。

本文作者: 张峰
本文链接: http://www.enjoyai.site/2018/01/08/
版权声明: 本博客所有文章,均采用 CC BY-NC-SA 3.0 许可协议。转载请注明出处!

Paper-[acmi 2015]Image based Static Facial Expression Recognition with Multiple Deep Network Learning的更多相关文章

  1. [论文][表情识别]Towards Semi-Supervised Deep Facial Expression Recognition with An Adaptive Confidence Margin

    论文基本情况 发表时间及刊物/会议:2022 CVPR 发表单位:西安电子科技大学, 香港中文大学,重庆邮电大学 问题背景 在大部分半监督学习方法中,一般而言,只有部分置信度高于提前设置的阈值的无标签 ...

  2. Paper Read: Robust Deep Multi-modal Learning Based on Gated Information Fusion Network

    Robust Deep Multi-modal Learning Based on Gated Information Fusion Network 2018-07-27 14:25:26 Paper ...

  3. Paper-[arXiv 1710.03144]Island Loss for Learning Discriminative Features in Facial Expression

    [arXiv 1710.03144]Island Loss for Learning Discriminative Features in Facial Expression ABSTRACT 作者在 ...

  4. 论文阅读之:Deep Meta Learning for Real-Time Visual Tracking based on Target-Specific Feature Space

    Deep Meta Learning for Real-Time Visual Tracking based on Target-Specific Feature Space  2018-01-04  ...

  5. [转]Deep Reinforcement Learning Based Trading Application at JP Morgan Chase

    Deep Reinforcement Learning Based Trading Application at JP Morgan Chase https://medium.com/@ranko.m ...

  6. Deep Learning 27:Batch normalization理解——读论文“Batch normalization: Accelerating deep network training by reducing internal covariate shift ”——ICML 2015

    这篇经典论文,甚至可以说是2015年最牛的一篇论文,早就有很多人解读,不需要自己着摸,但是看了论文原文Batch normalization: Accelerating deep network tr ...

  7. 2015暑假多校联合---Expression(区间DP)

    题目链接 http://acm.split.hdu.edu.cn/showproblem.php?pid=5396 Problem Description Teacher Mai has n numb ...

  8. Paper Reading - Long-term Recurrent Convolutional Networks for Visual Recognition and Description ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1411.4389 Main Points: A novel Recurrent Convolutional Arch ...

  9. Paper | Blind Quality Assessment Based on Pseudo-Reference Image

    目录 1. 技术细节 1.1 失真识别 1.2 得到对应的PRI并评估质量 块效应 模糊和噪声 1.3 扩展为通用的质量评价指标--BPRI 归一化3种质量评分 判断失真类型 加权求和 2. 总结 这 ...

随机推荐

  1. 网站顶部显示预加载进度条preload.js

    网站加载的速度快的话,不会显示进度条加载时候的样式. 支持性主流浏览器都支持,ie浏览器需要9以上9也支持. 使用方法 <script src="http://code.jquery. ...

  2. with as递归调用

    一.递归调用--在代码中偶尔看到以记之,便于下次学习 https://blog.csdn.net/johnf_nash/article/details/78681060 --查询节点及其下所有子节点 ...

  3. Ubuntu Server 与 Ubuntu Desktop区别

    今天有位朋友问我,Ubuntu Server 与 Ubuntu Desktop的区别在哪里!区别如下: SERVER没有GUI SERVER没有一堆的桌面软件 SERVER在编译时使用的参数不一样,会 ...

  4. linux 结构需要清理 (structure needs cleaning)

    下面操作会删除挂载点所有文件,注意备份. df -T 查看出错的挂载点对应的文件系统和文件系统类型   然后umount这个文件系统 umount /dev/sda1 然后文件系统类型不同操作不同  ...

  5. mysql进阶练习

    一 .  MySQL进阶练习 /*==========================创建班级表=============================*/ CREATE TABLE class ( ...

  6. Vue JsonView 树形格式化代码插件

     组件代码(临时粘出来) <template> <div class="bgView"> <div :class="['json-view' ...

  7. css3实现滚动手表

    静态html: <!DOCTYPE html><html> <head> <meta charset="utf-8" /> < ...

  8. ansible --help 文档

    > ansible --help Usage: ansible <host-pattern> [options] Define and run a single task 'play ...

  9. 用C#调用Windows API向指定窗口发送按键消息

    一.调用Windows API. C#下调用Windows API方法如下: 1.引入命名空间:using System.Runtime.InteropServices; 2.引用需要使用的方法,格式 ...

  10. 使用Spring的MailSender发送邮件

    第1步:扫描邮件发送的属性配置 <context:property-placeholder location="/config/mail.properties" ignore ...