今天A了张子苏大神的的题,感觉神清气爽。

一篇对于多层nim博弈讲的很透彻的博文:http://acm.hdu.edu.cn/forum/read.php?fid=9&tid=10617

我来整理一下:

问题1:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根, 可将一堆全取走,但不可不取,最后取完者为胜,求必胜的方法。 

定义:若所有火柴数异或为0,则该状态被称为利他态,用字母T表示;否则, 为利己态,用S表示。

注意:这篇博文是先定义s和t,再通过它们的性质推出结论。

[定理1]:对于任何一个S态,总能从一堆火柴中取出若干个使之成为T态。

证明:

  1. 若有n堆火柴,每堆火柴有A(i)根火柴数,那么既然现在处于S态, c = A(1) xor A(2) xor … xor A(n) > 0;
  2. 把c表示成二进制,记它的二进制数的最高位为第p位,则必然存在一个A(t),它二进制的第p位也是1。(否则,若所有的A(i)的第p位都是0,这与c的第p位就也为0矛盾)。
  3. 那么我们把x = A(t) xor c,则得到x < A(t).这是因为既然A(t)的第p位与c的第p位同为1,那么x的第p位变为0,而高于p的位并没有改变。所以x < A(t).而
  4. A(1) xor A(2) xor … xor x xor … xor A(n)
  5. = A(1) xor A(2) xor … xor A(t) xor c xor … xor A(n)
  6. = A(1) xor A(2) xor… xor A(n) xor A(1) xor A(2) xor … xor A(n)
  7. = 0
  8. 这就是说从A(t)堆中取出 A(t) - x 根火柴后状态就会从S态变为T态。证毕。

[定理2]:T态,取任何一堆的若干根,都将成为S态。

  1. 证明:用反证法试试。
  2. c = A(1) xor A(2) xor … xor A(i) xor … xor A(n) = 0;
  3. c' = A(1) xor A(2) xor … xor A(i') xor … xor A(n) = 0;
  4. 则有:
  5. c xor c' = A(1) xor A(2) xor … xor A(i) xor … xor A(n) xor A(1) xor A(2) xor … xor A(i')  xor … xor A(n) = A(i) xor A(i') =0
  6. 进而推出A(i) = A(i'),这与已知矛盾。所以命题得证。

[定理 3]:S态,只要方法正确,必赢。

  1. 最终胜利即由S态转变为T态,任何一个S态,只要把它变为T态,(由定理1,可以把它变成T态。)对方只能把T态转变为S态(定理2)。这样,所有S态向T态的转变都可以有己方控制,对方只能被动地实现由T态转变为S态。因为全零属于T态,故S态必赢。(不能单单从对称拿取来考虑这个问题。例如a=b xor c,然后求sg这种情况。因为证不出来。。定理1只是说存在这种情况,并没有说对称拿取。)

[定理4]:T态,只要对方法正确,必败。

  1. 由定理3易得。

问题2:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根, 可将一堆全取走,但不可不取,最后取完者为负,求必胜的方法。

【未完待续】

博弈论-一堆nim博弈合在一起的更多相关文章

  1. 博弈论中的Nim博弈

    瞎扯 \(orzorz\) \(cdx\) 聚聚给我们讲了博弈论.我要没学上了,祝各位新年快乐.现在让我讲课我都不知道讲什么,我会的东西大家都会,太菜了太菜了. 马上就要回去上文化课了,今明还是收下尾 ...

  2. Being a Good Boy in Spring Festival 博弈论 Nim博弈

    易游戏雷火盘古校园招聘开始! kiki's game Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 40000/10000 K (Ja ...

  3. HDU 2509 Nim博弈变形

    1.HDU 2509  2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...

  4. HDU 1907 Nim博弈变形

    1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...

  5. 关于NIM博弈结论的证明

    关于NIM博弈结论的证明 NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人 ...

  6. HDU - 1850 Nim博弈

    思路:可以对任意一堆牌进行操作,根据Nim博弈定理--所有堆的数量异或值为0就是P态,否则为N态,那么直接对某堆牌操作能让所有牌异或值为0即可,首先求得所有牌堆的异或值,然后枚举每一堆,用已经得到的异 ...

  7. HDU 2176:取(m堆)石子游戏(Nim博弈)

    取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  8. hdu 1730 Nim博弈

    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1730 Nim博弈为:n堆石子,每个人可以在任意一堆中取任意数量的石子 n个数异或值为0就后手赢,否则先 ...

  9. POJ 2234 Matches Game(Nim博弈裸题)

    Description Here is a simple game. In this game, there are several piles of matches and two players. ...

随机推荐

  1. 机器学习:偏差方差权衡(Bias Variance Trade off)

    一.什么是偏差和方差 偏差(Bias):结果偏离目标位置: 方差(Variance):数据的分布状态,数据分布越集中方差越低,越分散方差越高: 在机器学习中,实际要训练模型用来解决一个问题,问题本身可 ...

  2. 常用Oracle分析函数详解

    学习步骤:1. 拥有Oracle EBS demo 环境 或者 PROD 环境2. copy以下代码进 PL/SQL3. 配合解释分析结果4. 如果网页有点乱请复制到TXT中查看 /*假设一个经理代表 ...

  3. 部署和调优 2.8 mysql主从配置-2

    配置主从准备工作 在主上创建一个测试的数据库 首先登录主的mysql,或者用绝对路径 /usr/local/mysql/bin/mysql mysql > create database db1 ...

  4. spring分模块开发

  5. java输入输出--I/O操作基础知识学习

    一.java的I/O流 1. 输入流(字节流和字符流,字节流操作的数据单元是8位的字节,字符流操作的是16位的字符)(InputStream 和Reader作为基类) 2.输出流(字节流和字符流,字节 ...

  6. day35 02-Hibernate持久化对象状态及状态转换

    hibernate内置有一个c3p0,不用引入c3p0的jar包也行. 现在其实可以不用去创建表和实体类.因为hibernate可以自动帮我们生成.只要把映射建好了它就可以自动帮我们生成. 创建实体类 ...

  7. HDOJ 1121 Complete the Sequence

    [题目大意]有一个数列P,它的第i项是当x=i时,一个关于x的整式的值.给出数列的前S项,你需要输出它的第S+1项到第S+C项,并且使整式的次数最低.多测. [数据范围]数据组数≤5000,S+C≤1 ...

  8. cmake利用toolchain.cmake生成makefile之后,make生成静态库失败问题

    问题描述 利用toolchian.cmake设置好编译器后,利用make指令生成静态库,出现以下问题 Error running link command: No such file or direc ...

  9. windows7向github提交代码

    首先要有一个github账号. 我自己申请了github账号,然后创建一个代码仓库. 这个是我创建好的代码仓库:里面是空的没有代码,我今天从我本地写好的代码,传到github上面去. 首先需要告诉gi ...

  10. U盘刻录14.10镜像出问题的解决方法

    从几个月前的14.10 daily 版本就有U盘刻录无法启动的现象,相关bug可参见:https://bugs.launchpad.net/ubunt ... reator/+bug/1325801 ...