题目描述

Farmer John is herding his N cows (1 <= N <= 2,500) across the expanses of his farm when he finds himself blocked by a river. A single raft is available for transportation.

FJ knows that he must ride on the raft for all crossings and that that adding cows to the raft makes it traverse the river more slowly.

When FJ is on the raft alone, it can cross the river in M minutes (1 <= M <= 1000). When the i cows are added, it takes M_i minutes (1 <= M_i <= 1000) longer to cross the river than with i-1 cows (i.e., total M+M_1 minutes with one cow, M+M_1+M_2 with two, etc.). Determine the minimum time it takes for Farmer John to get all of the cows across the river (including time returning to get more cows).

Farmer John以及他的N(1 <= N <= 2,500)头奶牛打算过一条河,但他们所有的渡河工具,仅仅是一个木筏。 由于奶牛不会划船,在整个渡河过程中,FJ必须始终在木筏上。在这个基础上,木筏上的奶牛数目每增加1,FJ把木筏划到对岸就得花更多的时间。 当FJ一个人坐在木筏上,他把木筏划到对岸需要M(1 <= M <= 1000)分钟。当木筏搭载的奶牛数目从i-1增加到i时,FJ得多花M_i(1 <= M_i <= 1000)分钟才能把木筏划过河(也就是说,船上有1头奶牛时,FJ得花M+M_1分钟渡河;船上有2头奶牛时,时间就变成M+M_1+M_2分钟。后面的依此类推)。那么,FJ最少要花多少时间,才能把所有奶牛带到对岸呢?当然,这个时间得包括FJ一个人把木筏从对岸划回来接下一批的奶牛的时间。

输入输出格式

输入格式:

* Line 1: Two space-separated integers: N and M

* Lines 2..N+1: Line i+1 contains a single integer: M_i

输出格式:

* Line 1: The minimum time it takes for Farmer John to get all of the cows across the river.

输入输出样例

输入样例#1:
复制

5 10
3
4
6
100
1
输出样例#1: 复制

50

说明

There are five cows. Farmer John takes 10 minutes to cross the river alone, 13 with one cow, 17 with two cows, 23 with three, 123 with four, and 124 with all five.

Farmer John can first cross with three cows (23 minutes), then return (10 minutes), and then cross with the last two (17 minutes). 23+10+17 = 50 minutes total.

考虑 dp[ i ] 表示前 i 个奶牛的总耗费;

那么 dp 转移的时候枚举转移点即可;注意要加上单独返回时的时间;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 200005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int n, m;
int dp[maxn]; int main()
{
//ios::sync_with_stdio(0);
rdint(n); rdint(dp[0]);
for (int i = 1; i <= n; i++) {
int tmp; rdint(tmp); dp[i] = dp[i - 1] + tmp;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j < i; j++) {
dp[i] = min(dp[i], dp[j] + dp[i - j] + dp[0]);
}
}
cout << dp[n] << endl;
return 0;
}

[USACO08MAR]跨河River Crossing dp的更多相关文章

  1. bzoj1617 / P2904 [USACO08MAR]跨河River Crossing

    P2904 [USACO08MAR]跨河River Crossing 显然的dp 设$f[i]$表示运走$i$头奶牛,木筏停在未过河奶牛一侧所用的最小代价 $s[i]$表示一次运$i$头奶牛到对面的代 ...

  2. 【洛谷】P2904 [USACO08MAR]跨河River Crossing(dp)

    题目描述 Farmer John is herding his N cows (1 <= N <= 2,500) across the expanses of his farm when ...

  3. [luoguP2904] [USACO08MAR]跨河River Crossing(DP)

    传送门 f[i] 表示送前 i 头牛过去再回来的最短时间 f[i] = min(f[i], f[j] + sum[i - j] + m) (0 <= j < i) ——代码 #includ ...

  4. P2904 [USACO08MAR]跨河River Crossing

    题目描述 Farmer John is herding his N cows (1 <= N <= 2,500) across the expanses of his farm when ...

  5. 洛谷—— P2904 [USACO08MAR]跨河River Crossing

    https://www.luogu.org/problem/show?pid=2904 题目描述 Farmer John is herding his N cows (1 <= N <= ...

  6. 【洛谷2904/BZOJ1617】[USACO08MAR]跨河River Crossing(动态规划)

    题目:洛谷2904 分析: 裸dp-- dp方程也不难想: \(dp[i]\)表示运\(i\)头牛需要的最短时间,\(sum[i]\)表示一次运\(i\)头牛(往返)所需的时间,则 \[dp[i]=m ...

  7. 洛谷 P2904 [USACO08MAR]跨河River Crossing

    题目 动规方程 f[i]=min(f[i],f[i−j]+sum) 我们默认为新加一头牛,自占一条船.想象一下,它不断招呼前面的牛,邀请它们坐自己这条船,当且仅当所需总时间更短时,前一头奶牛会接受邀请 ...

  8. USACO River Crossing

    洛谷 P2904 [USACO08MAR]跨河River Crossing https://www.luogu.org/problem/P2904 JDOJ 2574: USACO 2008 Mar ...

  9. BZOJ 1617: [Usaco2008 Mar]River Crossing渡河问题( dp )

    dp[ i ] = max( dp[ j ] + sum( M_1 ~ M_( i - j ) ) + M , sum( M_1 ~ M_i ) ) ( 1 <= j < i )  表示运 ...

随机推荐

  1. vue-cli脚手架build目录中的karma.conf.js配置文件

    本文系统讲解vue-cli脚手架build目录中的karma.conf.js配置文件 这个配置文件是命令 npm run unit 的入口配置文件,主要用于单元测试 这条命令的内容如下 "c ...

  2. Solaris与Windows Active Directory集成

    通过Solaris与Active Directory的集成,Solaris可以使用Windows 2003 R2/ 2008 Active Directory来进行用户登录验证.以下是简要配置过程. ...

  3. java 多线程系列基础篇(二)

    概要 本章,我们学习“常用的实现多线程的2种方式”:Thread 和 Runnable.之所以说是常用的,是因为通过还可以通过java.util.concurrent包中的线程池来实现多线程.关于线程 ...

  4. C#改变LInqToSQL的引用地址,读取config的数据库字符串

    C#改变LInqToSQL的引用地址,读取config的数据库字符串修改Properties 下 Settings.Settings 下 Settings.Designer.cs 下 return ( ...

  5. css知多少(5)——选择器(转)

    css知多少(5)——选择器   1. 引言 从本节开始,就进入本系列的第二个部分——css和html的结合——说白了就是选择器. CSS中定义了样式,如何将这些样式设置到相应的html节点上?就不得 ...

  6. WebSocket详解(一):初步认识WebSocket技术

    1.什么是Socket?什么是WebSocket? 对于第1次听说WebSocket技术的人来说,两者有什么区别?websocket是仅仅将socket的概念移植到浏览器中的实现吗? 我们知道,在网络 ...

  7. 【摘自张宴的"实战:Nginx"】Nginx的server指令

    server 语法:server name[parameters] 默认值:none 使用环境:upstream 该指令用于指定后端服务器的名称和参数.服务器的名称可以是一个域名.一个IP地址.端口号 ...

  8. Halcon从某一个图片以指定区域绘制到另一个图像

    ************************************************************* * Halcon从某一个图片以指定区域绘制到另一个图像 * Author: ...

  9. Android 之 信息通知栏消息Notification

    Notification是安卓手机顶部的消息提示 这里我们分别设置两个按钮,来实现顶部消息的发送和取消 功能实现 首先要在主Activity中设置一个通知控制类 NotificationManager ...

  10. ARC059F

    传送门 分析 见ptx大爷博客 代码 #include<iostream> #include<cstdio> #include<cstring> #include& ...