It was recycling day in Kekoland. To celebrate it Adil and Bera went to Central Perk where they can take bottles from the ground and put them into a recycling bin.

We can think Central Perk as coordinate plane. There are n bottles on the ground, the i-th bottle is located at position (xi, yi). Both Adil and Bera can carry only one bottle at once each.

For both Adil and Bera the process looks as follows:

  1. Choose to stop or to continue to collect bottles.
  2. If the choice was to continue then choose some bottle and walk towards it.
  3. Pick this bottle and walk to the recycling bin.
  4. Go to step 1.

Adil and Bera may move independently. They are allowed to pick bottles simultaneously, all bottles may be picked by any of the two, it's allowed that one of them stays still while the other one continues to pick bottles.

They want to organize the process such that the total distance they walk (the sum of distance walked by Adil and distance walked by Bera) is minimum possible. Of course, at the end all bottles should lie in the recycling bin.

Input

First line of the input contains six integers ax, ay, bx, by, tx and ty (0 ≤ ax, ay, bx, by, tx, ty ≤ 109) — initial positions of Adil, Bera and recycling bin respectively.

The second line contains a single integer n (1 ≤ n ≤ 100 000) — the number of bottles on the ground.

Then follow n lines, each of them contains two integers xi and yi (0 ≤ xi, yi ≤ 109) — position of the i-th bottle.

It's guaranteed that positions of Adil, Bera, recycling bin and all bottles are distinct.

Output

Print one real number — the minimum possible total distance Adil and Bera need to walk in order to put all bottles into recycling bin. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct if .

Examples
Input

Copy
3 1 1 2 0 0
3
1 1
2 1
2 3
Output

Copy
11.084259940083
Input

Copy
5 0 4 2 2 0
5
5 2
3 0
5 5
3 5
3 3
Output

Copy
33.121375178000
Note

Consider the first sample.

Adil will use the following path: .

Bera will use the following path: .

Adil's path will be units long, while Bera's path will be units long.

题意:

两个人捡瓶子,分别从原位置出发,捡到一个后返回垃圾箱处放垃圾,两人独立;

问最后距离之和的 min;

令最开始的距离为 sum = ∑2*dist [ i ];

两人可以同时到一个点,那么距离就是 sum - dist [ i ] + disa [ i ] + disb [ i ]-dist [ i ];

当然也可以一个人去,那么就是 sum - dist [ i ] + ( disa [ i ] || disb[ i ] );

每次维护一个最小值即可;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 200005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} double ax, ay, bx, by, tx, ty;
struct node {
double x, y;
}indx[maxn]; double dis(double a, double b, double x, double y) {
return sqrt(1.0*(a - x)*(a - x) + 1.0*(b - y)*(b - y))*1.0;
} double dist[maxn], disa[maxn], disb[maxn]; int main()
{
//ios::sync_with_stdio(0);
rdlf(ax); rdlf(ay); rdlf(bx); rdlf(by); rdlf(tx); rdlf(ty);
int n; rdint(n);
double ans = 0.0;
for (int i = 1; i <= n; i++) {
rdlf(indx[i].x), rdlf(indx[i].y);
dist[i] = 1.0*dis(indx[i].x, indx[i].y, tx, ty);
disa[i] = 1.0*dis(ax, ay, indx[i].x, indx[i].y);
disb[i] = 1.0*dis(bx, by, indx[i].x, indx[i].y);
ans += 2.0*dist[i];
}
double Max = INF * 1.0;
double Maxx = INF * 1.0;
int posa, posb; for (int i = 1; i <= n; i++) {
if (Max > disa[i] - dist[i]) {
Max =1.0* disa[i] - 1.0*dist[i]; posa = i;
}
if (Maxx > disb[i] - dist[i]) {
Maxx = 1.0*disb[i] - 1.0*dist[i]; posb = i;
}
}
// cout << posa << ' ' << posb << endl;
double sum = ans;
if (Maxx < 0 && Max < 0) {
if (posa != posb) {
sum = ans + Maxx * 1.0 + Max * 1.0;
}
else {
for (int i = 0; i <= n; i++) {
if (i != posa) {
sum = min(sum, ans - dist[posa] + disa[posa] - dist[i] + disb[i]);
}
}
for (int i = 0; i <= n; i++) {
if (i != posb) {
sum = min(sum, ans - dist[posb] + disb[posb] - dist[i] + disa[i]);
}
}
}
}
else {
if (Max < Maxx) {
sum = ans + disa[posa] - dist[posa];
}
else {
sum = ans + disb[posb] - dist[posb];
}
}
printf("%.9lf\n", 1.0*sum);
return 0;
}

CF671A Recycling Bottles 计算几何的更多相关文章

  1. codeforces 672C C. Recycling Bottles(计算几何)

    题目链接: C. Recycling Bottles time limit per test 2 seconds memory limit per test 256 megabytes input s ...

  2. CF 672C Recycling Bottles[最优次优 贪心]

    C. Recycling Bottles time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  3. Codeforces Round #352 (Div. 2) C. Recycling Bottles 贪心

    C. Recycling Bottles   It was recycling day in Kekoland. To celebrate it Adil and Bera went to Centr ...

  4. codeforces 352 div 2 C.Recycling Bottles 贪心

    C. Recycling Bottles time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  5. Codeforces Recycling Bottles 模拟

    C. Recycling Bottles time limit per test: 2 seconds memory limit per test: 256 megabytes input: stan ...

  6. Codeforces Round #352 (Div. 1) A. Recycling Bottles 暴力

    A. Recycling Bottles 题目连接: http://www.codeforces.com/contest/671/problem/A Description It was recycl ...

  7. Codeforces 671 A——Recycling Bottles——————【思维题】

     Recycling Bottles time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  8. Codeforces Round #352 (Div. 2) C. Recycling Bottles

      C. Recycling Bottles time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  9. 【18.69%】【codeforces 672C】Recycling Bottles

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

随机推荐

  1. Solaris与Windows Active Directory集成

    通过Solaris与Active Directory的集成,Solaris可以使用Windows 2003 R2/ 2008 Active Directory来进行用户登录验证.以下是简要配置过程. ...

  2. SqlServer——事务—隔离级别

    隔离实际上是通过锁来实现的,作用于整个事务,它通常在事务开始前指定,如 SET TRANSACTION ISOLATION LEVEL READ Committed,指定后面的事务为 已提交读:而锁是 ...

  3. JS中substring()方法(用于提取字符串中介于两个指定下标之间的字符)

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  4. MVC5网站部署到IIS7

    server 2008R2+IIS7.5下配置不会出现什么问题,这里记录下在server2008+IIS7下的配置 参考了一下:http://www.cnblogs.com/fcu3dx/p/3773 ...

  5. sqlplus--spool基础运用

    set heading offset feedback offset echo offset newp noneset termout offspool /home/orarun/scripts/da ...

  6. JVM实用参数(二)参数分类和即时(JIT)编译器诊断

    JVM实用参数(二)参数分类和即时(JIT)编译器诊断 作者: PATRICK PESCHLOW     原文地址    译者:赵峰 校对:许巧辉 在这个系列的第二部分,我来介绍一下HotSpot J ...

  7. solr通过http请求搜索

    请求搜索必要的条件是:设置搜索条件params 设置 1.简单条件 SolrParams params = new SolrQuery("name:小飞鸟 AND  id:1520" ...

  8. WebSocket详解(一):初步认识WebSocket技术

    1.什么是Socket?什么是WebSocket? 对于第1次听说WebSocket技术的人来说,两者有什么区别?websocket是仅仅将socket的概念移植到浏览器中的实现吗? 我们知道,在网络 ...

  9. 对private protected public的详解:

    #include <iostream> #include <stack> #include <queue> #include <exception> # ...

  10. 100211D Police Cities

    传送门 分析 看到这个题我们的第一反应自然是Tarjan缩点,在这之后我们可以发现实际只要在缩点之后所有出度或入度为0的点布置警察局就可以达到要求,我们用dpij表示考虑前i个出度或入度为0的点共布置 ...