显然只需要能跑到第二个因子就赢了

需要特判非平凡因子

常数优化:不用求出所有因子,跑完第二个素数就行了

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 233;
ll n,cnt;
ll prime[maxn],num[maxn];
void chai(ll a){
cnt=0;
memset(num,0,sizeof num);
memset(prime,0,sizeof prime);
for(ll i = 2; i*i <= a; i++){
if(cnt>2) break;
if(a%i==0){
cnt++;
prime[cnt]=i;num[cnt]++;
a/=i;
while(a%i==0){
num[cnt]++;
a/=i;
}
}
}
}
int main(){
ios::sync_with_stdio(0);
while(cin>>n){
chai(n);
if((cnt>=2)||(cnt==1&&num[cnt]>=2)||cnt==0){
if(cnt==1&&num[cnt]==2&&n==prime[cnt]*prime[cnt]){
cout<<2<<endl;
continue;
}
cout<<1<<endl;
if(cnt==0) cout<<0<<endl;
else if(num[1]>1) cout<<prime[1]*prime[1]<<endl;
else cout<<prime[1]*prime[2]<<endl;
}
else cout<<2<<endl;
}
}

Codeforces - 151C 质因子分解的更多相关文章

  1. BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]

    1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...

  2. A 洛谷 P3601 签到题 [欧拉函数 质因子分解]

    题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...

  3. P2043 质因子分解

    P2043 质因子分解 题目描述 对N!进行质因子分解. 输入输出格式 输入格式: 输入数据仅有一行包含一个正整数N,N<=10000. 输出格式: 输出数据包含若干行,每行两个正整数p,a,中 ...

  4. POJ1845:Sumdiv(求因子和+逆元+质因子分解)好题

    题目链接:http://poj.org/problem?id=1845 定义: 满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元. 为什么要有乘法逆元呢? 当我们要求(a/b) mod p的 ...

  5. P2043 质因子分解(阶乘的质因数分解)

    P2043 质因子分解 对$n!$进行质因数分解的一种高效算法 首先,筛出$<=n$的素数 蓝后,对$n$反复除以$prime$,同时$cnt+=n/prime$ $n!$中含有该$prime$ ...

  6. Lightoj-1356 Prime Independence(质因子分解)(Hopcroft-Karp优化的最大匹配)

    题意: 找出一个集合中的最大独立集,任意两数字之间不能是素数倍数的关系. 思路: 最大独立集,必然是二分图. 最大数字50w,考虑对每个数质因子分解,然后枚举所有除去一个质因子后的数是否存在,存在则建 ...

  7. luogu P2043 质因子分解

    题目描述 对N!进行质因子分解. 输入输出格式 输入格式: 输入数据仅有一行包含一个正整数N,N<=10000. 输出格式: 输出数据包含若干行,每行两个正整数p,a,中间用一个空格隔开.表示N ...

  8. LightOJ1138 —— 阶乘末尾0、质因子分解

    题目链接:https://vjudge.net/problem/LightOJ-1138 1138 - Trailing Zeroes (III)    PDF (English) Statistic ...

  9. LightOJ1336 Sigma Function —— 质因子分解、约数和为偶数

    题目链接:https://vjudge.net/problem/LightOJ-1336 1336 - Sigma Function    PDF (English) Statistics Forum ...

随机推荐

  1. Solr根据参考点的坐标来返回范围内的小区和距离

    @Test public void query() throws Exception{ SystemDefaultHttpClient httpClient = new SystemDefaultHt ...

  2. 【WebRTC】简介

    WebRTC 名称源自网页实时通信(英语:Web Real-Time Communication)的缩写,是一个支持网页浏览器进行实时语音对话或视频对话的API.它于2011年6月1日开源并在Goog ...

  3. filter(函数,可以迭代的对象)

    #!/usr/bin/env python #filter(函数,可以迭代的对象) def f1(x): if x > 22: return True else: return False re ...

  4. MyBatis总结二:增删改查

    上一篇讲述了MyBatis的快速入门,下面在此基础上进行增删改查的操作: 首先定义dao层的接口: package com.zy.dao; import com.zy.domain.User; imp ...

  5. android-auto-scroll-view-pager (无限广告轮播图)

    github 地址: https://github.com/Trinea/android-auto-scroll-view-pager Gradle: compile ('cn.trinea.andr ...

  6. SSM项目连接远程Linux服务器的mysql 启动tomcat卡在了 Initializing Spring root WebApplicationContext

    网上查了原因, linux下mysql访问速度缓慢并且ssh连接缓慢的原因 解决办法: 1.linux ssh连接慢 最近发现ssh连接的时候却很慢,ping的速度非常好,让人误以为是ssh连接不上. ...

  7. aspose ppt转图片

    如果直接转图片,会很模糊采用先将ppt转pdf,在通过pdf转图片,这样出来的结果就非常清晰 var pptFileName = "公司网络及计算机使用与要求.pptx"; Pre ...

  8. linux 开启终端256色支持

    一.简介 一般的Linux发行版默认的终端都是16色的,但事实上几乎所有的终端都支持256色终端.本文介绍开启终端256色支持的方法. 二.操作步骤 1)检查终端是否支持256色 http://www ...

  9. ZROI2018普转提day7t1

    传送门 分析 一道有意思的小题... 我们发现如果$(1,1)$为白色,则将其变为白色需要偶数次操作,而如果为黑色则需要奇数次操作 我们知道要让A赢需要奇数次操作,所以我们只需要判断$(1,1)$的颜 ...

  10. Luogu 4409 [ZJOI2006]皇帝的烦恼

    BZOJ 1863 lyd口中的夹B递推. 挺妙的解法. 第一个感觉是找到一个最大的相邻的$a_i + a_{i - 1}$就可以了,但是这个想法大概只对了一半,一半的意思是说只有在$n$为偶数的时候 ...