提交通道

洛谷日报

考虑非\(O(n^2)\)的预处理。一遍dfs时,check某颜色有没有的数组何时清空很尴尬:得到某树答案后如果不清,则影响接下来兄弟树的搜索;如果清了,父亲节点又难以收集答案。

解决方法:先让儿子们各顾各的家,算一遍各自的答案(假如能算),check清就清了吧。然后考虑人为优化,即重链求完后等一等!先别清!然后将轻链重新扫一遍,也不清check数组的。代码中的keep就控制是否要清。这样轻链扫两遍,重链扫一遍,就得到了儿子们和父亲的答案,随机数据下复杂度\(O(nlogn)\)。

const int maxn = 1e5 + 5;
int n, m, u, v, c[maxn];
int size[maxn], son[maxn], ans[maxn];
bool check[maxn];
vector<int> adj[maxn]; void dfs1(int cur, int fa) {
size[cur] = 1;
for (int i : adj[cur])
if (i != fa) {
dfs1(i, cur);
size[cur] += size[i];
if (size[i] > size[son[cur]])
son[cur] = i;
}
} int dfs2(int cur, int fa, int keep) {
if (keep) {
for (int i : adj[cur])
if (i != fa && i != son[cur])
dfs2(i, cur, keep);
}
int res = 0;
if (son[cur]) res += dfs2(son[cur], cur, keep);
for (int i : adj[cur])
if (i != fa && i != son[cur])
res += dfs2(i, cur, 0); if (!check[c[cur]]) res++, check[c[cur]] = 1;
if (keep) {
ans[cur] = res;
if (cur != son[fa]) mset(check, 0);
} return res;
} int main() {
read(n);
rep(i, 1, n - 1) {
read(u), read(v);
adj[u].push_back(v);
adj[v].push_back(u);
}
rep(i, 1, n) read(c[i]); dfs1(1, 0);
dfs2(1, 0, 1); for (read(m); m--; ) {
read(u);
writeln(ans[u]);
}
return 0;
}

洛谷U41492(树上启发式合并)的更多相关文章

  1. 【Luogu U41492】树上数颜色——树上启发式合并(dsu on tree)

    (这题在洛谷主站居然搜不到--还是在百度上偶然看到的) 题目描述 给一棵根为1的树,每次询问子树颜色种类数 输入输出格式 输入格式: 第一行一个整数n,表示树的结点数 接下来n-1行,每行一条边 接下 ...

  2. dsu on tree (树上启发式合并) 详解

    一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了 1.前置技能 1.链式前向星(vector 建图) 2.dfs 建树 3.剖分轻重链,轻重儿子 重儿子 一个结点的所有 ...

  3. [洛谷U40581]树上统计treecnt

    [洛谷U40581]树上统计treecnt 题目大意: 给定一棵\(n(n\le10^5)\)个点的树. 定义\(Tree[l,r]\)表示为了使得\(l\sim r\)号点两两连通,最少需要选择的边 ...

  4. 树上启发式合并(dsu on tree)

    树上启发式合并属于暴力的优化,复杂度O(nlogn) 主要解决的问题特点在于: 1.对于树上的某些信息进行查询 2.一般问题的解决不包含对树的修改,所有答案可以离线解决 算法思路:这类问题的特点在于父 ...

  5. dsu on tree 树上启发式合并 学习笔记

    近几天跟着dreagonm大佬学习了\(dsu\ on\ tree\),来总结一下: \(dsu\ on\ tree\),也就是树上启发式合并,是用来处理一类离线的树上询问问题(比如子树内的颜色种数) ...

  6. 树上启发式合并(dsu on tree)学习笔记

    有丶难,学到自闭 参考的文章: zcysky:[学习笔记]dsu on tree Arpa:[Tutorial] Sack (dsu on tree) 先康一康模板题吧:CF 600E($Lomsat ...

  7. 神奇的树上启发式合并 (dsu on tree)

    参考资料 https://www.cnblogs.com/zhoushuyu/p/9069164.html https://www.cnblogs.com/candy99/p/dsuontree.ht ...

  8. hdu6191(树上启发式合并)

    hdu6191 题意 给你一棵带点权的树,每次查询 \(u\) 和 \(x\) ,求以 \(u\) 为根结点的子树上的结点与 \(x\) 异或后最大的结果. 分析 看到子树,直接上树上启发式合并,看到 ...

  9. Codeforces 208E - Blood Cousins(树上启发式合并)

    208E - Blood Cousins 题意 给出一棵家谱树,定义从 u 点向上走 k 步到达的节点为 u 的 k-ancestor.多次查询,给出 u k,问有多少个与 u 具有相同 k-ance ...

  10. Codeforces 600E - Lomsat gelral(树上启发式合并)

    600E - Lomsat gelral 题意 给出一颗以 1 为根的树,每个点有颜色,如果某个子树上某个颜色出现的次数最多,则认为它在这课子树有支配地位,一颗子树上,可能有多个有支配的地位的颜色,对 ...

随机推荐

  1. 无法解决 equal to 操作中 "Chinese_PRC_CI_AS" 和 "Chinese_PRC_BIN" 之间的排序规则冲

    在两个数据库之间进行复合查询时有时会出现如下错误: 无法解决 equal to 操作中 "Chinese_PRC_CI_AS" 和 "Chinese_PRC_BIN&qu ...

  2. css知多少(8)——float上篇(转)

    1. 引言 对于我们所有的web前端开发人员,float是或者曾经一度是你最熟悉的陌生人——你离不开它,却整天承受着它所带给你的各种痛苦,你以为它很简单就那么一点知识,但却驾驭不了它各种奇怪的现象. ...

  3. 解决iText+freemark导出pdf不支持base64的解决办法

    工具类: package test; import java.io.IOException ; import org.w3c.dom.Element ; import org.xhtmlrendere ...

  4. 算法Sedgewick第四版-第1章基础-014一用stack把前置表达式转为后置表达式并计算值

    1. /************************************************************************* * Exercise 1.3.10 * * ...

  5. GCD学习(六) dispatch_async 和dispatch_sync

    dispatch_sync(),同步添加操作.他是等待添加进队列里面的操作完成之后再继续执行. dispatch_queue_t concurrentQueue = dispatch_queue_cr ...

  6. NSButton添加事件

    -(void)addButton { NSButton* pushButton = [[NSButton alloc] initWithFrame: NSMakeRect(, , , )]; push ...

  7. 《Maven实战》笔记-1-Maven使用入门

    <Maven实战>徐晓斌 2011 机械工业出版社   一.介绍 1.名词 artifact:插件 极限编程XP 2.构建脚本: maven——pom.xml(Project Object ...

  8. springMVC:modelandview,model,controller,参数传递

    转载:http://blog.csdn.net/wm5920/article/details/8173480 1.web.xml 配置: copy   <> ></> & ...

  9. [译]Javasctipt中的substring

    本文翻译youtube上的up主kudvenkat的javascript tutorial播放单 源地址在此: https://www.youtube.com/watch?v=PMsVM7rjupU& ...

  10. redis系列:哨兵

    1 简介 Sentinel(哨兵)是Redis 的高可用性解决方案:通过哨兵可以创建一个当主服务器出现故障时自动将从服务器升级为主服务器的一个分布式系统.解决了主从复制出现故障时需要人为干预的问题. ...