题目来源:http://poj.org/problem?id=1063

题目大意:

  有一种游戏如图所示。一个填满黑白球的转盘,它可以有两种操作,一种是将大转盘顺时针旋转,所有球的位置顺时针挪一位,另一种是转动小转盘,使位于小转盘处的三个小球颠倒位置。游戏的目标是达到下面的图片所示的状态,黑球与白球都处在连续的位置上。

  写一个程序判断给出的球序列是否可能通过上述的两种操作达到目标序列。

输入:第一行为测试用例数T。每个用例第一个数为小球的数目n, 接下来是n个0和1组成的序列,每个数字用空格隔开,0表示白球,1表示黑球。n的值在10到30之间。

输出:如可能达到目标,输出一行“YES”, 否则“NO”


Sample Input

2
18 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0 0 0 1
14 1 1 0 0 1 1 1 0 0 1 1 0 1 0

Sample Output

YES
NO

观察和琢磨上面的两种对于球的操作,我们可以发现,其实规则等价于可以把任意三个相邻的三个球位置颠倒。考虑两种情况:

1. 球的总数为偶数,那么奇数位的球永远到不了偶数位上,反之亦然。

2. 球的总数为奇数,那么任意一个球都可以到达其它任意一个位置上,这种情况下总可以达到目标状态。

  再考虑球总数为偶数时,实际上可以把操作对球颜色顺序的影响分离为对奇数位上球的影响和对偶数位球的影响。我们想象把所有偶数位的球固定,通过旋转可以调换奇数位上相邻的球,通过不断的调换可以把奇数位上黑球调至相邻位置。同样我们可以把偶数位上的黑球调至连续的位置。接下来还要考虑何种情况下才能使整个大转盘上的球可以达到不存在黑白相间的情况。答案是:奇数位上的黑球个数与偶数位上黑球的个数相差不超过1. 这就是球总数为偶数时能达到目标状态的充要条件。

附上两个版本的代码。(直观版和技巧版)

 ////////////////////////////////////////////////////////////////
// POJ1063 Flip and Shift
// Memory: 208K Time : 16MS
// Language : C++ Result : Accepted
//////////////////////////////////////////////////////////////// #include <iostream> using namespace std; int even_black, odd_black;
int buf, cnt; int main(void) {
int T;
cin >> T;
for (int case_id = ; case_id <= T; ++case_id) {
cin >> cnt;
even_black = odd_black = ;
for (int i = ; i < cnt; ++i) {
cin >> buf;
if (buf == ) {
if (i % == ) {
++odd_black;
} else {
++even_black;
}
}
}
if (cnt % ) { //总球数为奇
cout << "YES" << endl;
} else if (odd_black - even_black > || odd_black - even_black < -) {
cout << "NO" << endl;
} else {
cout << "YES" << endl;
}
}
return ;
}
 ////////////////////////////////////////////////////////////////
// POJ1063 Flip and Shift
// Memory: 208K Time : 0MS
// Language : C++ Result : Accepted
//////////////////////////////////////////////////////////////// #include <iostream> using namespace std; int r[];
int buf, cnt; int main(void) {
int T; cin >> T;
for (int case_id = ; case_id <= T; ++case_id) {
cin >> cnt;
r[] = r[] = ;
for (int i = ; i < cnt; ++i) {
cin >> buf;
r[i % ] += buf;
}
cout << (cnt % || r[] - r[] < && r[] - r[] > - ? "YES" : "NO") << endl;
}
return ;
}

POJ1063 Flip and Shift的更多相关文章

  1. zoj 1028 Flip and Shift(数学)

    Flip and Shift Time Limit: 2 Seconds      Memory Limit: 65536 KB This puzzle consists of a random se ...

  2. POJ 1063 Flip and Shift 最详细的解题报告

    题目来源:Flip and Shift 题目大意:一个椭圆形的环形容器中有黑色和白色两种盘子,问你是否可以将黑色的盘子连续的放在一起.你可以有以下两种操作: 1.顺时针旋转所有的盘子 2.顺时针旋转3 ...

  3. POJ 1063 - Flip and Shift

    Description This puzzle consists of a random sequence of m black disks and n white disks on an oval- ...

  4. 1254 Flip and Shift

    这题是目的是把黑球和白球分开连续放,事实上只要把其中一种颜色分好在一边就可以,可以绕一个球转即是第n个球可以放在n-2或者n+2上,因为这是个环,所以只需要把黑球或者白球连续放好就可以,当一共有奇数个 ...

  5. POJ题目排序的Java程序

    POJ 排序的思想就是根据选取范围的题目的totalSubmittedNumber和totalAcceptedNumber计算一个avgAcceptRate. 每一道题都有一个value,value ...

  6. POJ题目细究

    acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP:  1011   NTA                 简单题  1013   Great Equipment     简单题  102 ...

  7. HOJ题目分类

    各种杂题,水题,模拟,包括简单数论. 1001 A+B 1002 A+B+C 1009 Fat Cat 1010 The Angle 1011 Unix ls 1012 Decoding Task 1 ...

  8. 论文阅读笔记五十五:DenseBox: Unifying Landmark Localization with End to End Object Detection(CVPR2015)

    论文原址:https://arxiv.org/abs/1509.04874 github:https://github.com/CaptainEven/DenseBox 摘要 本文先提出了一个问题:如 ...

  9. 【转】POJ百道水题列表

    以下是poj百道水题,新手可以考虑从这里刷起 搜索1002 Fire Net1004 Anagrams by Stack1005 Jugs1008 Gnome Tetravex1091 Knight ...

随机推荐

  1. 转载 : JSP取得绝对路径

    转自:https://www.aliyun.com/jiaocheng/770177.html 转自:http://www.cnblogs.com/xdp-gacl/p/3707243.html 在J ...

  2. 部署和调优 1.9 samba 部署和优化-3

    实践2 要求:共享一个目录,使用用户名和密码登录后才可以访问,要求可以读写 打开配置文件 vim /etc/samba/smb.conf 改为security = user 在最后面增加一段 [den ...

  3. lucene 5.2.0学习笔记

    package com.bc.cas.manager; import com.bc.cas.dao.BookDao; import com.bc.cas.model.entity.Book; impo ...

  4. Python之list的创建以及使用

    list是一种有序的集合,可以随意添加和删除里面的元素. 空的list的定义:L = [] list当中的元素用[]概括起来. 在list当中可以使用索引来进行访问: 在这里我们要注意我们在进行索引的 ...

  5. 【266】增加bash文件的执行权限

    正常需要通过[bash pass.sh]来执行文件,但是可以通过增加bash文件的执行权限实现通过[./pass.sh]或者[pass.sh]来执行文件. 方法:通过chmod来增加权限,下面四种方法 ...

  6. git 本地代码到github(转)

    git 本地代码到github   一·什么是gitHub? 官网解释:gitHub是一个让无论处于何地的代码工作者能工作于同一个项目,同一个版本的平台.(GitHub is a code hosti ...

  7. 一个典型的PHP分页实例代码

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  8. ???Spring集成MyBatis02 【不推荐使用,了解即可】

    2017年5月19日09:31:22 由于该种方法比较麻烦,所以三少暂时不更新,哈哈哈:待更新...

  9. winform 对话框控件

    ColorDialog 可以调节颜色的控件,如果给一个按钮点击事件 ColorDialog.showdialog();就会弹出这个 返回值是个枚举类 然后定义一个这个类的变量 接收一下它的返回值 Di ...

  10. IDEA java 代码格式化统一

    Intellij idea 安装格式化插件 ECLIPSE CODE FORMATTER:1,安装插件:网络安装:选择Setting =>Plugins=>Browse repositor ...