Softmax回归(Softmax Regression
多分类问题
在一个多分类问题中,因变量y有k个取值,即。例如在邮件分类问题中,我们要把邮件分为垃圾邮件、个人邮件、工作邮件3类,目标值y是一个有3个取值的离散值。这是一个多分类问题,二分类模型在这里不太适用。
多分类问题符合多项分布。有许多算法可用于解决多分类问题,像决策树、朴素贝叶斯等。这篇文章主要讲解多分类算法中的Softmax回归(Softmax Regression)
推导思路为:首先证明多项分布属于指数分布族,这样就可以使用广义线性模型来拟合这个多项分布,由广义线性模型推导出的目标函数即为Softmax回归的分类模型。
证明多项分布属于指数分布族
多分类模型的输出结果为该样本属于k个类别的概率,从这k个概率中我们选择最优的概率对应的类别(通常选概率最大的类别),作为该样本的预测类别。这k个概率用k个变量,
…,
表示。这个k变量和为1,即满足:
可以用前k-1个变量来表示,即:
使用广义线性模型拟合这个多分类问题,首先要验证这个多项分布是否符合一个指数分布族。定义T(y)为:
在这里,统计分量T(y)并没有像之前那样定义为T(y)=y,因为T(y)不是一个数值,而是一个k-1维的向量。使用符号表示向量T(y)的第i个元素。
在这里引入一个新符号:,如果括号内为true则这个符号取1,反之取0,即
,
。所以,T(y)与y的关系就可以表示为
与
关系为:
即:
多项分布表达式转化为指数分布族表达式过程如下:
其中:
变换过程:
第一步:取值为
,
…,
中的一个,取决于y的取值。当y=i时,这一步可以理解为
第二步:消去
第三步:根据
第四、五步:转换为广义线性模型的表达格式。
多项分布表达式可以表示为指数分布族表达式的格式,所以它属于指数分布族,那么就可以用广义线性模型来拟合这个多项式分布模型。
Softmax函数(Softmax Function)
在使用广义线性模型拟合这个多项式分布模型之前,需要先推导一个函数,这个函数在广义线性模型的目标函数中会用到。这个函数称为Softmax函数(Softmax Function)。
由η表达式可得:
这是关于
的表达式,把它转化为
关于
的表达式过程为:
为了方便,令,那么
因为:
所以:
这个关于
的的函数称为Softmax函数(Softmax Function)。
使用广义线性构建模型
根据广义线性模型的假设3:
θ是模型中的参数,为了符号上的方便我们定义,所以
所以模型在给定x的条件下y的分布为:
上面的表达式求解的是在y=i时的概率。在Softmax回归这个广义线性模型中,目标函数是:
Softmax回归目标函数的输出是k个概率,即
其中i=1,2,…,k(虽然输出的是k-1个值,但是第k个值
可以由
求出),求解了这个目标函数,我们就构造出了分类模型。
目标函数推导过程如下:
现在求解目标函数还差最后一步:参数拟合的问题。跟我们之前的参数拟合方法类似,我们有m个训练样本,θ的似然函数为:
最大化似然函数来求解最优的参数θ,可以使用梯度上升或者牛顿方法。
求解了最优的参数θ后,就可以使用目标函数进行分类。使用函数
进行多分类的方式就叫Softmax回归(Softmax Regression)
Softmax回归(Softmax Regression的更多相关文章
- Softmax回归(Softmax Regression, K分类问题)
Softmax回归:K分类问题, 2分类的logistic回归的推广.其概率表示为: 对于一般训练集: 系统参数为: Softmax回归与Logist ...
- Softmax回归 softMax回归与logistic回归的关系
简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分 ...
- 【机器学习】Softmax 和Logistic Regression回归Sigmod
二分类问题Sigmod 在 logistic 回归中,我们的训练集由 个已标记的样本构成: ,其中输入特征.(我们对符号的约定如下:特征向量 的维度为 ,其中 对应截距项 .) 由于 logis ...
- Machine Learning 学习笔记 (3) —— 泊松回归与Softmax回归
本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 泊松回归 (Poisson ...
- 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...
- 手写数字识别 ----Softmax回归模型官方案例注释(基于Tensorflow,Python)
# 手写数字识别 ----Softmax回归模型 # regression import os import tensorflow as tf from tensorflow.examples.tut ...
- 《转》Logistic回归 多分类问题的推广算法--Softmax回归
转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是log ...
- 逻辑回归,多分类推广算法softmax回归中
转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是log ...
- 02-13 Softmax回归
目录 Softmax回归 一.Softmax回归详解 1.1 让步比 1.2 不同类之间的概率分布 1.3 目标函数 1.4 目标函数最大化 二.Softmax回归优缺点 2.1 优点 2.2 缺点 ...
- 利用TensorFlow识别手写的数字---基于Softmax回归
1 MNIST数据集 MNIST数据集主要由一些手写数字的图片和相应的标签组成,图片一共有10类,分别对应从0-9,共10个阿拉伯数字.原始的MNIST数据库一共包含下面4个文件,见下表. 训练图像一 ...
随机推荐
- [USACO09OCT]热浪Heat Wave Dijkstra
题目描述 The good folks in Texas are having a heatwave this summer. Their Texas Longhorn cows make for g ...
- Maven项目聚合 jar包锁定 依赖传递 私服
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- POJ2945 Find the Clones trie树
建一颗$trie$树(当然你哈希也资瓷),边插边更新,看看搜到最底时有多少个字符串,然后更新. #include<cstdio> #include<iostream> #inc ...
- 2017年江西理工大学C语言程序设计竞赛(初级组)
问题 A: Petr的盒子(初) #include <iostream> #include <stdio.h> #include <algorithm> using ...
- 自定义xml spring bean
一. xml中bean解析过程 扫描META-INF下面的 spring.schemas bean定义对应的xsd位置,在IDEA中可以辅助校验) spring.handlers xmlns对应 ...
- map 常用方法
map遍历: Map map = new HashMap(); Iterator it = map.entrySet().iterator(); while(it.hasNext()) { Map.E ...
- RPC框架设计思路
RPC是指远程过程调用 1.要解决通讯的问题,主要是通过在客户端和服务器之间建立TCP连接,远程过程调用的所有交换的数据都在这个连接里传输.连接可以是按需连接,调用结束后就断掉,也可以是长连接,多个远 ...
- 使用PM2守护Node.js应用
PM2简介 PM2是node进程管理工具,可以利用它来简化很多node应用管理的繁琐任务,如性能监控.自动重启.负载均衡等,而且使用非常简单. 安装PM2 $ npm install pm2 -g ...
- Linux Mint下的conky配置
最近闲来无事,想把自己的Linux Mint弄的再炫酷点,在桌面上显示一些信息,因为我已经装了Cairo-dock,现在就差这个了,下面简单说下整个流程,首先你得安装conky, sudo apt-g ...
- UPDATE SQL 不同环境执行结果不一样
背景:1.前台:JQUERY 提交数据 2.后台:OWIN C# 处理接收数据 3.数据库: postgresql ========================================= ...