大数据实时处理平台市场上产品众多,本文着重讨论spark与storm的比对,最后结合适用场景进行选型。

一、spark与storm的比较

比较点

Storm

Spark Streaming

实时计算模型

纯实时,来一条数据,处理一条数据

准实时,对一个时间段内的数据收集起来,作为一个RDD,再处理

实时计算延迟度

毫秒级

秒级

吞吐量

事务机制

支持完善

支持,但不够完善

健壮性 / 容错性

ZooKeeper,Acker,非常强

Checkpoint,WAL,一般

动态调整并行度

支持

不支持

二、Spark Streaming与Storm的应用场景

适用Storm的场景:

1、需要纯实时,不能忍受1秒以上延迟的场景下使用,比如实时金融系统,要求纯实时进行金融交易和分析

2、对于实时计算的功能中,要求可靠的事务机制和可靠性机制,即数据的处理完全精准,一条也不能多,一条也不能少,也可以考虑使用Storm

3、若还需要针对高峰低峰时间段,动态调整实时计算程序的并行度,以最大限度利用集群资源(通常是在小型公司,集群资源紧张的情况),也可以考虑用Storm

4、如果一个大数据应用系统,它就是纯粹的实时计算,不需要在中间执行SQL交互式查询、复杂的transformation算子等,那么用Storm是比较好的选择

适用Spark Streaming的场景:

1、如果对上述适用于Storm的三点,一条都不满足的实时场景,即:不要求纯实时,不要求强大可靠的事务机制,不要求动态调整并行度,那么可以考虑使用Spark Streaming

  1. vi config/server.www.douniu178.com   properties
  2. broker.id=0
  3. num.partitions=3
  4. zookeeper.www.feifanyule.cn/ www.ysgj1688.com connect=focuson1:www.089188.cn 2181,focuson2:2181,focuson3:2181
  • 启动,在三个节点分别执行:
  1. nohup .www.baohuayule.net  /bin/kafka-server-start.sh config/server.properties &
  • 创建一个topic并查看所有的topic,可指定该topic的分区,副本数量
  1. [root@focuson1 kafka_2.11-1.1.0]# bin/kafka-topics.sh --create --zookeeper focuson1:2181 --replication-factor 2 --partitions 3 --topic focuson_test1
  2. WARNING: Due to limitations in metric names, topics with a period ('.') or underscore ('_') could collide. To avoid issues it is best to use either, but not both.
  3. Created topic "focuson_test1".
  4. [root@focuson1 kafka_2.11-1.1.0]# bin/kafka-topics.sh --list --zookeeper focuson2:2181
  5. focuson_test1

2、考虑使用Spark Streaming最主要的一个因素,应该是针对整个项目进行宏观的考虑,即:如果一个项目除了实时计算之外,还包括了离线批处理、交互式查询等业务功能,而且实时计算中,可能还会牵扯到高延迟批处理、交互式查询等功能,那么就应该首选Spark生态,用Spark Core开发离线批处理,用Spark SQL开发交互式查询,用Spark Streaming开发实时计算,三者可以无缝整合,给系统提供非常高的可扩展性 Spark Streaming与Storm的优劣分析事实上,Spark Streaming绝对谈不上比Storm优秀。

总之,这两个框架在实时计算领域都很优秀,只是擅长的细分场景并不相同。Spark Streaming仅仅在吞吐量上比Storm要优秀,而吞吐量这一点,也是历来挺Spark Streaming贬Storm的人着重强调的。但是问题是,是不是在所有的实时计算场景下,都那么注重吞吐量?不尽然。因此,通过吞吐量说Spark Streaming强于Storm,不靠谱。事实上,Storm在实时延迟度上,比Spark Streaming就好多了,前者是纯实时,后者是准实时。而且,Storm的事务机制、健壮性 / 容错性、动态调整并行度等特性,都要比Spark Streaming更加优秀。Spark Streaming,有一点是Storm绝对比不上的,就是:它位于Spark生态技术栈中,因此Spark Streaming可以和Spark Core、Spark SQL无缝整合,也就意味着,我们可以对实时处理出来的中间数据,立即在程序中无缝进行延迟批处理、交互式查询等操作。这个特点大大增强了Spark Streaming的优势和功能。

spark与storm比对与选型的更多相关文章

  1. Spark记录-spark与storm比对与选型(转载)

    大数据实时处理平台市场上产品众多,本文着重讨论spark与storm的比对,最后结合适用场景进行选型. 一.spark与storm的比较 比较点 Storm Spark Streaming 实时计算模 ...

  2. 简单对比Spark和Storm

    2013年参与开发了一个类似storm的自研系统, 2014年使用过spark 4个多月,对这两个系统都有一些了解. 下面是我关于这两个系统的简单对比: Spark: 1. 基于数据并行,https: ...

  3. Hadoop2.0/YARN深入浅出(Hadoop2.0、Spark、Storm和Tez)

    随着云计算.大数据迅速发展,亟需用hadoop解决大数据量高并发访问的瓶颈.谷歌.淘宝.百度.京东等底层都应用hadoop.越来越多的企 业急需引入hadoop技术人才.由于掌握Hadoop技术的开发 ...

  4. 大数据 Hadoop,Spark和Storm

    大数据(Big Data)   大数据,官方定义是指那些数据量特别大.数据类别特别复杂的数据集,这种数据集无法用传统的数据库进行存储,管理和处理.大数据的主要特点为数据量大(Volume),数据类别复 ...

  5. Yarn、MapReduce、spark、storm的关系

    YARN并不是下一代 MapReduce (MRv2),下一代 MapReduce 与第一代 MapReduce (MRv1)在编程接口.数据处理引擎(MapTask和ReduceTask)是完全一样 ...

  6. 【分布式计算】关于Hadoop、Spark、Storm的讨论

    参考资料: 与 Hadoop 对比,如何看待 Spark 技术?:https://www.zhihu.com/question/26568496 还要不要做大数据:http://sinofool.cn ...

  7. 大数据技术大合集:Hadoop家族、Cloudera系列、spark、storm【转】

    大数据我们都知道hadoop,可是还会各种各样的技术进入我们的视野:Spark,Storm,impala,让我们都反映不过来.为了能够更好 的架构大数据项目,这里整理一下,供技术人员,项目经理,架构师 ...

  8. 大数据Spark与Storm技术选型

    先做一个对比:   对比点 Storm Spark Streaming 实时计算模型 纯实时,来一条数据,处理一条数据 准实时,对一个时间段内的数据收集起来,作为一个RDD,再处理 实时计算延迟度 毫 ...

  9. spark与storm的对比

    对比点 Storm Spark Streaming 实时计算模型 纯实时,来一条数据,处理一条数据 准实时,对一个时间段内的数据收集起来,作为一个RDD,再处理 实时计算延迟度 毫秒级 秒级 吞吐量 ...

随机推荐

  1. JavaScript提高容错的方式

    项目环境为Java Web项目,前端多用jquery,记录碰到的JS提高容错的编写方式. 回调的数据为null,数据绑定过程报错,影响下面代码执行 这种情况一开始想到的是能不能改用前端框架来动态的对页 ...

  2. 493. Reverse Pairs

    // see more at https://www.youtube.com/watch?v=j68OXAMlTM4 // https://leetcode.com/problems/reverse- ...

  3. openwrt(三) 固件的烧录

    导航: 方法1: tftp: 方法2: 在线升级 方法3: BIOS烧录 方法1:TFTP 这应该是最万能的一种方法了.TFTP是一种依靠网口传送数据的一种通信协议,没错,只是传输数据,并不是烧录,所 ...

  4. vue-cli 引入axios

    写文章注册登录     首页 下载App × vue-cli 引入axios及跨域使用 星球小霸王 关注 2017.10.04 16:40* 字数 504 阅读 13038评论 2喜欢 18 使用 c ...

  5. python基础----ipython快捷键

    Standard Ipython keyboard shortcut • Ctrl -C interrupt currently-executing code • Ctrl- U Discard al ...

  6. 如何在 Eclipse 中使用插件构建 PHP 开发环境[转]

    原文出处: http://hykloud.com/2012/03/08/information_technology/how-setup-eclipse-php-pdt-remote-system-e ...

  7. 《Cracking the Coding Interview》——第16章:线程与锁——题目4

    2014-04-27 20:06 题目:设计一个类,只有在不产生死锁的时候才分配资源. 解法:不太清楚这个题是要分配何种资源,以何种形式?所以没能动手写个可运行的代码,只是闲扯了几句理论分析. 代码: ...

  8. maven的一些使用配置!

    1.国外库太慢,更换为国内镜像库在你的maven安装目录下找到conf目录下的setting.xml修改:<mirrors> <id>CN</id> <nam ...

  9. express 热启动 静态文件部署 跨域解决 调试

    1.热启动 每次修改app.js文件,都得重新启动项目,十分不方便.这里可以用hotnode插件实现热启动 安装:$ npm install -g hotnode 启动项目:$ hotnode app ...

  10. freemaker参考地址

    https://zhidao.baidu.com/question/1304215193023416939.html