POJ2396 Budget 【带下界的最大流】
Time Limit: 3000MS | Memory Limit: 65536K | |||
Total Submissions: 5962 | Accepted: 2266 | Special Judge |
Description
the sums over different kinds of expenses and sums over different sites. There was also some talk about special constraints: someone mentioned that Computer Center would need at least 2000K Rials for food and someone from Sharif Authorities argued they wouldn't
use more than 30000K Rials for T-shirts. Anyway, we are sure there was more; we will go and try to find some notes from that meeting.
And, by the way, no one really reads budget proposals anyway, so we'll just have to make sure that it sums up properly and meets all constraints.
Input
The second line contains m integers, giving the row sums of the matrix. The third line contains n integers, giving the column sums of the matrix. The fourth line contains an integer c (c < 1000) giving the number of constraints. The next c lines contain the
constraints. There is an empty line after each test case.
Each constraint consists of two integers r and q, specifying some entry (or entries) in the matrix (the upper left corner is 1 1 and 0 is interpreted as "ALL", i.e. 4 0 means all entries on the fourth row and 0 0 means the entire matrix), one element from the
set {<, =, >} and one integer v, with the obvious interpretation. For instance, the constraint 1 2 > 5 means that the cell in the 1st row and 2nd column must have an entry strictly greater than 5, and the constraint 4 0 = 3 means that all elements in the fourth
row should be equal to 3.
Output
Sample Input
2 2 3
8 10
5 6 7
4
0 2 > 2
2 1 = 3
2 3 > 2
2 3 < 5 2 2
4 5
6 7
1
1 1 > 10
Sample Output
2 3 3
3 3 4 IMPOSSIBLE
Source
这题做得真是抓狂啊,前前后后断断续续用了三天时间,主要时间都卡在一个手误上。敲错了一个字母...
题意:有一个n*m 的方阵, 方阵里面的数字未知, 可是我们知道例如以下约束条件:
1> 每一行的数字的和
2> 每一列的数字的和
3> 某些格子里的数,大小有限制。
比方规定第2行第3 列的数字必须大于5( 或必须小于3, 或必须等于10等)
求解是否存在在满足全部的约束的条件下用正数来填充该方阵的方案, 若有, 输出填充后的方阵, 否则输出IMPOSSIBLE.
题解:这道题能够转化成容量有上下界的最大流问题, 将方阵的行从1……n 编号, 列n+1……n+m 编号, 加入源点s=0 和汇点t=n+m+1.
1> 将源点和每个行节点相连, 相连所形成的边的容量和下界置为该行全部数字的和
2> 将每个列节点和汇点相连, 相连所形成的边的容量和下界都置为该列全部数字的和
3> 从每一个行节点到每一个列节点连边,容量为无穷大
4> 假设u 行v 列的数字必须大于w, 则边<u,v+n> 流量的下界是w+1
5> 假设u 行v 列的数字必须小于w, 则边<u,v+n> 容量改为w-1
6> 假设u 行v 列的数字必须等于w, 则边<u,v+n> 流量的下界和容量都是w
找到的可行流(也是最大流)。就是问题的解
本题trick:
1) W 可能为负数。产生流量下界为负数的情况。应处理成0
2) 数据本身可能矛盾。
比方前面说了 (2,1) =1, 后面又说(2,1) = 10
#include <stdio.h>
#include <string.h>
#define inf 0x3fffffff
#define maxn 250 int m, n, sink, ssource, ssink; // m rows, n columns
int G[maxn][maxn], G0[maxn][maxn], flow[maxn][maxn];
int low[maxn][maxn], high[maxn][maxn];
int in[maxn], out[maxn], Layer[maxn], que[maxn];
bool vis[maxn]; int min(int a, int b) {
return a > b ? b : a;
} int max(int a, int b) {
return a < b ? b : a;
} bool countLayer() {
memset(Layer, 0, sizeof(Layer));
int i, now, id = 0, front = 0;
Layer[ssource] = 1; que[id++] = ssource;
while(front < id) {
now = que[front++];
for(i = 0; i <= ssink; ++i)
if(G[now][i] > 0 && !Layer[i]) {
Layer[i] = Layer[now] + 1;
if(i == ssink) return true;
else que[id++] = i;
}
}
return false;
} int Dinic() {
int maxFlow = 0, minCut, pos, i, now, u, v, id = 0;
while(countLayer()) {
memset(vis, 0, sizeof(vis));
vis[ssource] = 1; que[id++] = ssource;
while(id) {
now = que[id - 1];
if(now == ssink) {
minCut = inf;
for(i = 1; i < id; ++i) {
u = que[i - 1];
v = que[i];
if(minCut > G[u][v]) {
minCut = G[u][v];
pos = u;
}
}
maxFlow += minCut;
for(i = 1; i < id; ++i) {
u = que[i - 1];
v = que[i];
G[u][v] -= minCut;
G[v][u] += minCut;
flow[u][v] += minCut;
flow[v][u] -= minCut;
}
while(que[id - 1] != pos)
vis[que[--id]] = 0;
} else {
for(i = 0; i <= ssink; ++i) {
if(G[now][i] > 0 && Layer[now] + 1 == Layer[i] && !vis[i]) {
vis[i] = 1; que[id++] = i; break;
}
}
if(i > ssink) --id;
}
}
}
return maxFlow;
} void solve() {
int i, j, sum = 0;
for(i = 0; i <= sink; ++i)
for(j = 0; j <= sink; ++j) {
G[i][j] = high[i][j] - low[i][j];
out[i] += low[i][j];
in[j] += low[i][j];
sum += low[i][j];
}
for(i = 0; i <= sink; ++i) {
G[ssource][i] = in[i];
G[i][ssink] = out[i];
}
// memcpy(G0, G, sizeof(G));
G[sink][0] = inf;
if(sum != Dinic()) {
printf("IMPOSSIBLE\n");
return;
}
G[sink][0] = G[0][sink] = 0;
for(i = 1; i <= m; ++i) {
// printf("%d", G0[i][1 + m] - G[i][1 + m] + low[i][1 + m]);
printf("%d", flow[i][1 + m] + low[i][1 + m]);
for(j = 2; j <= n; ++j)
printf(" %d", flow[i][j + m] + low[i][j + m]);
printf("\n");
}
} int main() {
// freopen("POJ2396.txt", "r", stdin);
// freopen("ans1.txt", "w", stdout);
int t, c, x, y, z, i, j;
char ch;
scanf("%d", &t);
while(t--) {
memset(G, 0, sizeof(G));
memset(low, 0, sizeof(low));
memset(high, 0, sizeof(high));
memset(out, 0, sizeof(out));
memset(in, 0, sizeof(in));
memset(flow, 0, sizeof(flow));
scanf("%d%d", &m, &n);
sink = m + n + 1;
ssource = sink + 1;
ssink = ssource + 1;
for(i = 1; i <= m; ++i) {
scanf("%d", &z);
low[0][i] = high[0][i] = z;
}
for(i = 1; i <= n; ++i) {
scanf("%d", &z);
low[m + i][sink] = high[m + i][sink] = z;
}
for(i = 1; i <= m; ++i) {
for(j = 1; j <= n; ++j) {
high[i][j + m] = inf;
}
}
scanf("%d", &c);
while(c--) {
scanf("%d%d %c %d", &x, &y, &ch, &z);
if(!x && y) { // 全部行的第y个元素
if(ch == '=') {
for(i = 1; i <= m; ++i)
low[i][m + y] = high[i][m + y] = z;
} else if(ch == '<') {
for(i = 1; i <= m; ++i)
high[i][m + y] = min(z - 1, high[i][m + y]);
} else {
for(i = 1; i <= m; ++i)
low[i][m + y] = max(z + 1, low[i][m + y]);
}
} else if(x && !y) {
if(ch == '=') {
for(i = 1; i <= n; ++i)
low[x][m + i] = high[x][m + i] = z;
} else if(ch == '<') {
for(i = 1; i <= n; ++i)
high[x][m + i] = min(high[x][m + i], z - 1);
} else {
for(i = 1; i <= n; ++i)
low[x][m + i] = max(low[x][m + i], z + 1);
}
} else if(!x && !y) {
for(i = 1; i <= m; ++i)
for(j = 1; j <= n; ++j) {
if(ch == '=')
low[i][m + j] = high[i][m + j] = z;
else if(ch == '<')
high[i][m + j] = min(high[i][m + j], z - 1);
else low[i][m + j] = max(low[i][m + j], z + 1);
}
} else {
if(ch == '=')
low[x][m + y] = high[x][m + y] = z;
else if(ch == '<')
high[x][m + y] = min(high[x][m + y], z - 1);
else low[x][m + y] = max(low[x][m + y], z + 1);
}
}
solve();
printf("\n");
}
return 0;
}
POJ2396 Budget 【带下界的最大流】的更多相关文章
- BZOJ 3876: [Ahoi2014]支线剧情 带下界的费用流
3876: [Ahoi2014]支线剧情 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3876 Description [故事背景] 宅 ...
- [BZOJ2502]清理雪道解题报告|带下界的最小流
滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定时清理雪道.你们拥有一架直升飞机,每次飞 ...
- poj2396 Budget 上下界可行流
Budget:http://poj.org/problem?id=2396 题意: 给定一个棋盘,给定每一行每一列的和,还有每个点的性质.求一个合理的棋盘数值放置方式. 思路: 比较经典的网络流模型, ...
- UVa 1440:Inspection(带下界的最小流)***
https://vjudge.net/problem/UVA-1440 题意:给出一个图,要求每条边都必须至少走一次,问最少需要一笔画多少次. 思路:看了好久才勉强看懂模板.良心推荐:学习地址. 看完 ...
- POJ2396 Budget [有源汇上下界可行流]
POJ2396 Budget 题意:n*m的非负整数矩阵,给出每行每列的和,以及一些约束关系x,y,>=<,val,表示格子(x,y)的值与val的关系,0代表整行/列都有这个关系,求判断 ...
- ZOJ 2314 带上下界的可行流
对于无源汇问题,方法有两种. 1 从边的角度来处理. 新建超级源汇, 对于每一条有下界的边,x->y, 建立有向边 超级源->y ,容量为x->y下界,建立有向边 x-> 超级 ...
- 【BZOJ-2893】征服王 最大费用最大流(带下界最小流)
2893: 征服王 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 156 Solved: 48[Submit][Status][Discuss] D ...
- POJ 2396 Budget (上下界网络流有源可行流)
转载: http://blog.csdn.net/axuan_k/article/details/47297395 题目描述: 现在要针对多赛区竞赛制定一个预算,该预算是一个行代表不同种类支出.列代表 ...
- POJ2396 Budget
Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 7401 Accepted: 2764 Special Judge D ...
随机推荐
- Spring/Spring MVC/Spring Boot实现跨域
说明:Spring MVC和Spring Boot其实用的都是同一套. CORS介绍请看这里:https://developer.mozilla.org/zh-CN/docs/Web/HTTP/Acc ...
- ARM32 Linux kernel virtual address space
http://thinkiii.blogspot.jp/2014/02/arm32-linux-kernel-virtual-address-space.html The 32-bit ARM C ...
- Persisting iOS Application Data in SQLite Database Using FMDB
In previous articles we have utilized NSUserDefaults and .NET web services to persist iPhone data. N ...
- Android如何缓存你的BITMAP对象
在app中通常最占内存.占流量的元素就是图片了,图片往往又无处不在,特别是伴随着list,GridView或者ViewPager出现,这些图片随着你的滑动操作,时而出现在你的屏幕中,时而消失在屏幕之外 ...
- 【mybatis】mybatis中的<if test=“”>test中多条件
mybatis中的<if test=“”>test中多条件 代码展示: 其中 accountCode和apiName都是ApiAllRespBean的属性 <select id=&q ...
- kubernetes 实用 api list
https://192.168.20.128:6443/api/v1/pods 原文来自https://segmentfault.com/a/1190000002937665 收集整理一些可能较常用的 ...
- Swagger简介,轻松构造restful api的文档
Swagger 是一款RESTFUL接口的文档在线自动生成+功能测试功能软件. Swagger 是一个规范和完整的框架,用于生成.描述.调用和可视化 RESTful 风格的 Web 服务.总体目标是使 ...
- util.date.js
ylbtech-JavaScript-util: util.date.js 日期处理工具 1.A,JS-效果图返回顶部 1.B,JS-Source Code(源代码)返回顶部 1.B.1, m.y ...
- Spring声明式事务的配置方式
1.事务的特性 原子性:事务中的操作是不可分割的一部分 一致性:要么同时成功,要么同时失败(事务执行前后数据保持一致) 隔离性:并发互不干扰 持久性:事务一旦被提交,它就是一条持久 ...
- 尝试一下markdown
尝试一下markdown 简单介绍以下几个宏: __VA_ARGS__是一个可变参数的宏,这个可变参数的宏是新的C99规范中新增的,目前似乎只有gcc支持(VC6.0的编译器不支持).宏前面加上##的 ...