Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.

However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi​ problems, the p_{i, 1}pi,1​-th, p_{i, 2}pi,2​-th, ......, p_{i, s_i}pi,si​​-th problem before.(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j​≤n,0<j≤si​,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.

"I wonder if I can leave the contest arena when the problems are too easy for me."
"No problem."
—— CCF NOI Problem set

If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai​+bi​ points. (|a_i|, |b_i| \le 10^9)(∣ai​∣,∣bi​∣≤109).

Your task is to calculate the maximum number of points he can get in the contest.

Input

The first line of input contains an integer, nn, which is the number of problems.

Then follows nn lines, the ii-th line contains s_i + 3si​+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai​,bi​,si​,p1​,p2​,...,psi​​as described in the description above.

Output

Output one line with one integer, the maximum number of points he can get in the contest.

Hint

In the first sample.

On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.

On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13points.

On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.

On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.

On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.

So he can get 11+13+13+11+7=5511+13+13+11+7=55points in total.

In the second sample, you should note that he doesn't have to solve all the problems.

样例输入1复制

  1. 5
  2. 5 6 0
  3. 4 5 1 1
  4. 3 4 1 2
  5. 2 3 1 3
  6. 1 2 1 4

样例输出1复制

  1. 55

样例输入2复制

  1. 1
  2. -100 0 0

样例输出2复制

  1. 0

题目大意:有n道题,每道题做出来会得到t*a[i]+b[i]分,但是有些题目有先决条件,需要先完成某些题目才能写,问最多能得到多少分

题目思路:这道题需要用二进制的做法。首先先用二进制表示每道题的先决条件,放入pre数组,第几位是1就是需要先写第几题。然后就把所有的情况全部枚举出来,由于一共就20题,一共也就2^20的情况,然后也是用二进制表示每一种情况。由于是从小到大,所以他的前一刻一定都已经出来了,然后就试探把每一位删掉,判断这道题需要做的先决条件是否已经够了,先&pre[i],如果能够等于pre[i],这说明需要的题目都已经出了,可以推出当前情况,然后数出这种情况是第几个1,也就是说这道题是哪一刻做的,然后就可以算出这种情况下的值。

  1. #include<stdio.h>
  2. #include<string.h>
  3. #include<algorithm>
  4. using namespace std;
  5. const int INF = 0x3f3f3f3f ;
  6.  
  7. #define ll long long
  8.  
  9. ll dp[(<<)];
  10. int One[<<];
  11. struct no
  12. {
  13. int a,b,id,per;
  14. }a[];
  15. ///得到n的二进制的1,表示的是一共做了多少了
  16. int GetOne(int n)
  17. {
  18. int count = ;
  19. while(n){
  20. count++;
  21. n = n & (n - );
  22. }
  23. return count;
  24. }
  25. int main( )
  26. {
  27. int n ;
  28. scanf("%d",&n);
  29. for(int i= ; i<n ; i++)
  30. {
  31. scanf("%d%d%d",&a[i].a,&a[i].b,&a[i].id);
  32.  
  33. while(a[i].id--)
  34. {
  35. int x ;
  36. scanf("%d",&x);
  37. a[i].per |= (<<(x-)); ///per记录了这个问题需要完成谁
  38. }
  39. }
  40. memset(dp,-INF,sizeof(dp)) ;
  41. ll ans = ;
  42. for(int i= ; i<(<<n) ; i++)
  43. One[i]=GetOne(i);
  44.  
  45. dp[] = ;
  46.  
  47. for(int i= ; i<(<<n) ; i++)
  48. {
  49. if(dp[i]!=-INF) ///减少重复运算
  50. {
  51. for(int j= ; j<n ; j++)
  52. {
  53. if((i & a[j].per)==a[j].per)///如果满足了这个问题的条件
  54. {
  55. if((i&(<<j))==)///如果j问题还没有用到
  56. {
  57. dp[(i|(<<j))] = max( dp[(i|(<<j))] , dp[i]+(ll)(One[i]+)*a[j].a+a[j].b);
  58.  
  59. }
  60. }
  61. }
  62. }
  63. ans = max(ans,dp[i]);
  64. }
  65. printf("%lld\n",ans);
  66. return ;
  67. }

ACM-ICPC 2018 南京赛区网络预赛 E. AC Challenge (状态压缩DP)的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP

    题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest with n (0 < n \le 20)n(0& ...

  2. ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge(状压dp)

    https://nanti.jisuanke.com/t/30994 题意 给你n个题目,对于每个题目,在做这个题目之前,规定了必须先做哪几个题目,第t个做的题目i得分是t×ai+bi问最终的最大得分 ...

  3. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  4. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  5. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  6. 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)

    J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any squar ...

  7. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

  8. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

  9. ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall

    题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K   Feeling hungry, a cute hamster decides to o ...

随机推荐

  1. 1143. Lowest Common Ancestor (30)

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...

  2. scrollHeight

    scrollHeight=显示内容高度+隐藏内容高度 参考: https://developer.mozilla.org/en-US/docs/Web/API/Element.scrollHeight ...

  3. VS2008中宽字节和普通字节的使用

    由于麻烦,所以并没有使用宽字节,留待以后.

  4. SYS/BIOS实例分析

    SYS/BIOS简介 SYS/BIOS是一个可扩展的实时内核(或者说是操作系统),其提供了许多模块化的APIs(应用程序接口),支持抢占式多线程,硬件抽象,实时分析和配置工具,其设计目的是为了最大限度 ...

  5. Python:Iterable和Iterator

    转于:https://blog.csdn.net/whgqgq/article/details/63685066 博主:gongqi1992 iterable和iterator最基本的区别: iter ...

  6. Linux系统主流架构一

    Linux系统主流架构一 随着IT运维的不断发展,尤其的Linux的飞速发展,越来越多的企业开始使用Linux操作系统,例如:Centos.Red Hat.Ubuntu.Fadora等等,成千上亿个网 ...

  7. ES6学习之Set和Map

    一.Set 1.Set 定义:Set类似于数组,但成员的值都是唯一的,没有重复的值 let s = new Set([1,2,3,4,5,2,4]); //Set { 1, 2, 3, 4, 5 } ...

  8. AJAX经常遇到的那些问题

    本文主要介绍了AJAX工作原理以及在面试题经常会遇到的问题,目录如下: 什么是Ajax 为什么要使用Ajax? Ajax特点? AJAX优缺点? Ajax流程? XMLhttprequest对象 AJ ...

  9. Nodejs调试技术

    基于Chrome浏览器的调试器 既然我们可以通过V8的调试插件来调试,那是否也可以借用Chrome浏览器的JavaScript调试器来调试呢?node-inspector模块提供了这样一种可能.我们需 ...

  10. centos-6.4 yum EPEL

    初用centos,很多不习惯,记录一下. 首先装EPEL,不然默认的包少得可怜:(详见:http://www.rackspace.com/knowledge_center/article/instal ...