Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.

However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi​ problems, the p_{i, 1}pi,1​-th, p_{i, 2}pi,2​-th, ......, p_{i, s_i}pi,si​​-th problem before.(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j​≤n,0<j≤si​,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.

"I wonder if I can leave the contest arena when the problems are too easy for me."
"No problem."
—— CCF NOI Problem set

If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai​+bi​ points. (|a_i|, |b_i| \le 10^9)(∣ai​∣,∣bi​∣≤109).

Your task is to calculate the maximum number of points he can get in the contest.

Input

The first line of input contains an integer, nn, which is the number of problems.

Then follows nn lines, the ii-th line contains s_i + 3si​+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai​,bi​,si​,p1​,p2​,...,psi​​as described in the description above.

Output

Output one line with one integer, the maximum number of points he can get in the contest.

Hint

In the first sample.

On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.

On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13points.

On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.

On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.

On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.

So he can get 11+13+13+11+7=5511+13+13+11+7=55points in total.

In the second sample, you should note that he doesn't have to solve all the problems.

样例输入1复制

5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4

样例输出1复制

55

样例输入2复制

1
-100 0 0

样例输出2复制

0

题目大意:有n道题,每道题做出来会得到t*a[i]+b[i]分,但是有些题目有先决条件,需要先完成某些题目才能写,问最多能得到多少分

题目思路:这道题需要用二进制的做法。首先先用二进制表示每道题的先决条件,放入pre数组,第几位是1就是需要先写第几题。然后就把所有的情况全部枚举出来,由于一共就20题,一共也就2^20的情况,然后也是用二进制表示每一种情况。由于是从小到大,所以他的前一刻一定都已经出来了,然后就试探把每一位删掉,判断这道题需要做的先决条件是否已经够了,先&pre[i],如果能够等于pre[i],这说明需要的题目都已经出了,可以推出当前情况,然后数出这种情况是第几个1,也就是说这道题是哪一刻做的,然后就可以算出这种情况下的值。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int INF = 0x3f3f3f3f ; #define ll long long ll dp[(<<)];
int One[<<];
struct no
{
int a,b,id,per;
}a[];
///得到n的二进制的1,表示的是一共做了多少了
int GetOne(int n)
{
int count = ;
while(n){
count++;
n = n & (n - );
}
return count;
}
int main( )
{
int n ;
scanf("%d",&n);
for(int i= ; i<n ; i++)
{
scanf("%d%d%d",&a[i].a,&a[i].b,&a[i].id); while(a[i].id--)
{
int x ;
scanf("%d",&x);
a[i].per |= (<<(x-)); ///per记录了这个问题需要完成谁
}
}
memset(dp,-INF,sizeof(dp)) ;
ll ans = ;
for(int i= ; i<(<<n) ; i++)
One[i]=GetOne(i); dp[] = ; for(int i= ; i<(<<n) ; i++)
{
if(dp[i]!=-INF) ///减少重复运算
{
for(int j= ; j<n ; j++)
{
if((i & a[j].per)==a[j].per)///如果满足了这个问题的条件
{
if((i&(<<j))==)///如果j问题还没有用到
{
dp[(i|(<<j))] = max( dp[(i|(<<j))] , dp[i]+(ll)(One[i]+)*a[j].a+a[j].b); }
}
}
}
ans = max(ans,dp[i]);
}
printf("%lld\n",ans);
return ;
}

ACM-ICPC 2018 南京赛区网络预赛 E. AC Challenge (状态压缩DP)的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP

    题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest with n (0 < n \le 20)n(0& ...

  2. ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge(状压dp)

    https://nanti.jisuanke.com/t/30994 题意 给你n个题目,对于每个题目,在做这个题目之前,规定了必须先做哪几个题目,第t个做的题目i得分是t×ai+bi问最终的最大得分 ...

  3. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  4. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  5. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  6. 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)

    J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any squar ...

  7. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

  8. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

  9. ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall

    题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K   Feeling hungry, a cute hamster decides to o ...

随机推荐

  1. UVA11059 - Maximum Product

    1.题目名称 Maximum Product 2.题目地址 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemi ...

  2. bzoj 2342: 双倍回文 回文自动机

    题目大意: 定义双倍回文串的左一半和右一半均是回文串的长度为4的倍数的回文串 求一个给定字符串中最长的双倍回文串的长度 题解: 我们知道可以简单地判定以某一点结尾的最长回文串 我们知道可以简单地判定以 ...

  3. Access中复制表

    很多时候在Access中需要复制表,或只复制结构,源表名:a: 新表名:b (经测试中Access可用)   法一:select * into b from a where 1<>1   ...

  4. 洛谷【P2115】[USACO14MAR]破坏Sabotage

    我对二分的理解:https://www.cnblogs.com/AKMer/p/9737477.html 题目传送门:https://www.luogu.org/problemnew/show/P21 ...

  5. git rebase小计(转)

    git rebase,顾名思义,就是重新定义(re)起点(base)的作用,即重新定义分支的版本库状态.要搞清楚这个东西,要先看看版本库状态切换的两种情况: 我们知道,在某个分支上,我们可以通过git ...

  6. 用Raspberry Pi搭建Azure IOT解决方案

    Raspberry Pi是一款基于Linux的单板机电脑.它由英国的树莓派基金会所开发,目的是以低价硬件及自由软件刺激在学校的基本计算机科学教育.树莓派配备一枚博通(Broadcom)出产的ARM架构 ...

  7. DCloud-MUI:Hello mui

    ylbtech-DCloud-MUI:Hello mui MUI-最接近原生App体验的前端框架 1. 返回顶部 1. MUI-最接近原生App体验的前端框架 极小 100k的js文件,60k的css ...

  8. word2010以上版本中快捷录入数学公式的方法(二)

    以前推荐的方法,随着方正飞翔网站上关闭了数学公式输入法的支持也不能不用了,现在再推荐一个可以在word2010以上版中快捷输入数学公式的方法,安装AxMath,一切问题都OK!我是直接购买的正版,25 ...

  9. Python循环-break和continue

    break用于完全结束一个循环,跳出循环体,执行循环后面的语句 # -*- coding:utf-8 -*- __author__ = "MuT6 Sch01aR" count = ...

  10. RStudio版本管理 整合Git

    本文为原创,转载注明出处. 系统环境: win7 x64 R-3.1.0-win.exe RStudio-0.98.507.exe 前置条件:必须拥有github仓库: 如:https://githu ...