The Swiss Army Knife of Data Structures … in C#
Background:
Created by Ralf Hinze and Ross Paterson in 2004, and based to a large extent on the work of Chris Okasaki on Implicit Recursive Slowdown and Catenable Double-Ended Queus, this data structure, to quote the abstract of the paper introducing Finger Trees, is:
"a functional representation of persistent sequences supporting access to the ends in amortized constant time, and concatenation and splitting in time logarithmic in the size of the smaller piece. Representations achieving these bounds have appeared previously, but 2-3 finger trees are much simpler, as are the operations on them. Further, by defining the split operation in a general form, we obtain a general purpose data structure that can serve as a sequence, priority queue, search tree, priority search queue and more."
Why the finger tree deserves to be called the Swiss knife of data structures can best be explained by again quoting the introduction of the paper:
"The operations one might expect from a sequence abstraction include adding and removing elements at both ends (the deque operations), concatenation, insertion and deletion at arbitrary points, finding an element satisfying some criterion, and splitting the sequence into subsequences based on some property. Many efficient functional implementations of subsets of these operations are known, but supporting more operations efficiently is difficult. The best known general implementations are very complex, and little used.
This paper introduces functional 2-3 finger trees, a general implementation that performs well, but is much simpler than previous implementations with similar bounds. The data structure and its many variations are simple enough that we are able to give a concise yet complete executable description using the functional programming language Haskell (Peyton Jones, 2003). The paper should be accessible to anyone with a basic knowledge of Haskell and its widely used extension to multiple-parameter type classes (Peyton Jones et al., 1997). Although the structure makes essential use of laziness, it is also suitable for strict languages that provide a lazy evaluation primitive."
Efficiency and universality are the two most attractive features of finger trees. Not less important is simplicity, as it allows easy understanding, straightforward implementation and uneventful maintenance.
Stacks support efficient access to the first item of a sequence only, queues and deques support efficient access to both ends, but not to an randomly-accessed item. Arrays allow extremely efficient O(1) access to any of their items, but are poor at inserting, removal, splitting and concatenation. Lists are poor (O(N)) at locating a randomly indexed item.
Remarkably, the finger tree is efficient with all these operations. One can use this single data structure for all these types of operations as opposed to having to use several types of data structures, each most efficient with only some operations.
Note also the words functional and persistent, which mean that the finger tree is an immutable data structure.
In .NET the IList<T> interface specifies a number of void methods, which change the list in-place (so the instance object is mutable). To implement an immutable operation one needs first to make a copy of the original structure (List<T>, LinkedList<T>, …, etc). An achievement of .NET 3.5 and LINQ is that the set of new extension methods (of theEnumerable class) implement immutable operations.
In the year 2008, Finger Tree implementations have been known only in a few programming languages: in Haskell, in OCaml, and in Scala. At least this is what the popular search engines say.
What about a C# implementation? In February Eric Lippert had a post in his blogabout finger trees. The C# code he provided does not implement all operations of a Finger Tree and probably this is the reason why this post is referred to by the Wikipedia only as "Example of 2-3 trees in C#", but not as an implementation of the Finger Tree data structure. Actually, he did have a complete implementation at that time (see the Update at the start of this post), but desided not to publish it.
My modest contribution is what I believe to be the first published complete C# implementation of the Finger Tree data structure as originally defined in the paper by Hinze and Paterson (only a few exercises have not been implemented).
Programming a Finger Tree in C# was as much fun as challenge. The finger tree structure is defined in an extremely generic way. At first I even was concerned that C# might not be sufficiently expressive to implement such rich genericity. It turned out that C# lived up to the challenge perfectly. Here is a small example of how the code uses multiple types and nested type constraints:
// Types:
// U — the type of Containers that can be split
// T — the type of elements in a container of type U
// V — the type of the Measure-value when an element is measured
public class Split<U, T, V>
where U : ISplittable<T, V>
where T : IMeasured<V>
{
// ………………………………………………….
}
Another challenge was to implement lazy evaluation (the .NET term for this is "deferred execution") for some of the methods. Again, C# was up to the challenge with its IEnumerable interface and the ease and finesse of using the "yield return" statement.
The net result: it was possible to write code like this:
public override IEnumerable<T> ToSequence()
{
ViewL<T, M> lView = LeftView();
yield return lView.head;
foreach (T t in lView.ftTail.ToSequence())
yield return t;
}
Another challenge, of course, was that one definitely needs to understand Hinze’s and Ross’ article before even trying to start the design of an implementation. While the text should be straightforward to anyone with some Haskell and functional programming experience, it requires a bit of concentration and some very basic understanding of fundamental algebraic concepts. In the text of the article one will find a precise and simple definition of a Monoid. My first thought was that such academic knowledge would not really be necessary for a real-world programming task. Little did I know… It turned out that the Monoid plays a central role in the generic specification of objects that have a Measure.
I was thrilled to code my own version of a monoid in C#:
public class Monoid<T>
{
T theZero;
public delegate T monOp(T t1, T t2);
public monOp theOp;
public Monoid(T tZero, monOp aMonOp)
{
theZero = tZero;
theOp = aMonOp;
}
public T zero
{
get
{
return theZero;
}
}
}
Without going into too-much details, here is how the correct Monoids are defined in suitable auxiliary classes to be used in defining a Random-Access Sequence, Priority Queue and Ordered Sequence:
public static class Size
{
public static Monoid<uint> theMonoid =
new Monoid<uint>(0, new Monoid<uint>.monOp(anAddOp));
public static uint anAddOp(uint s1, uint s2)
{
return s1 + s2;
}
}
public static class Prio
{
public static Monoid<double> theMonoid =
new Monoid<double>
(double.NegativeInfinity,
new Monoid<double>.monOp(aMaxOp)
);
public static double aMaxOp(double d1, double d2)
{
return (d1 > d2) ? d1 : d2;
}
}
public class Key<T, V> where V : IComparable
{
public delegate V getKey(T t);
// maybe we shouldn’t care for NoKey, as this is too theoretic
public V NoKey;
public getKey KeyAssign;
public Key(V noKey, getKey KeyAssign)
{
this.KeyAssign = KeyAssign;
}
}
public class KeyMonoid<T, V> where V : IComparable
{
public Key<T, V> KeyObj;
public Monoid<V> theMonoid;
public V aNextKeyOp(V v1, V v2)
{
return (v2.CompareTo(KeyObj.NoKey) == 0) ? v1 : v2;
}
//constructor
public KeyMonoid(Key<T, V> KeyObj)
{
this.KeyObj = KeyObj;
this.theMonoid =
new Monoid<V>(KeyObj.NoKey,
new Monoid<V>.monOp(aNextKeyOp)
);
}
}
Yet another challenge was to be able to create methods dynamically, as currying was essentially used in the specification of finger trees with measures. Once again it was great to make use of the existing .NET 3.5 infrastructure. Below is my simple FP static class, which essentially uses the .NET 3.5 Func object and a lambda expressionin order to implement currying:
public static class FP
{
public static Func<Y, Z> Curry<X, Y, Z>
(this Func<X, Y, Z> func, X x)
{
return (y) => func(x, y);
}
}
And here is a typical usage of the currying implemented above:
public T ElemAt(uint ind)
{
return treeRep.Split
(new MPredicate<uint>
(
FP.Curry<uint, uint, bool>(theLessThanIMethod2, ind)
),
0
).splitItem.Element;
}
Now, for everyone who have reached this point of my post, here is the link to the complete implementation.
Be reminded once again that .NET 3.5 is needed for a successful build.
In my next posts I will analyze the performance of this Finger Tree implementation and how it fares compared to existing implementations of sequential data structures as provided by different programming languages and environments.
The Swiss Army Knife of Data Structures … in C#的更多相关文章
- A library of generic data structures
A library of generic data structures including a list, array, hashtable, deque etc.. https://github. ...
- 剪短的python数据结构和算法的书《Data Structures and Algorithms Using Python》
按书上练习完,就可以知道日常的用处啦 #!/usr/bin/env python # -*- coding: utf-8 -*- # learn <<Problem Solving wit ...
- Persistent Data Structures
原文链接:http://www.codeproject.com/Articles/9680/Persistent-Data-Structures Introduction When you hear ...
- Go Data Structures: Interfaces
refer:http://research.swtch.com/interfaces Go Data Structures: Interfaces Posted on Tuesday, Decembe ...
- Choose Concurrency-Friendly Data Structures
What is a high-performance data structure? To answer that question, we're used to applying normal co ...
- 无锁数据结构(Lock-Free Data Structures)
一个星期前,我写了关于SQL Server里闩锁(Latches)和自旋锁(Spinlocks)的文章.2个同步原语(synchronization primitives)是用来保护SQL Serve ...
- [CareerCup] 10.2 Data Structures for Large Social Network 大型社交网站的数据结构
10.2 How would you design the data structures for a very large social network like Facebook or Linke ...
- Manipulating Data Structures
Computer Science An Overview _J. Glenn Brookshear _11th Edition We have seen that the way data struc ...
- Objects and Data Structures
Date Abstraction Hiding implementation is not just a matter of putting a layer of fucntions between ...
随机推荐
- Android Studio导入项目问题小结
1. import project 之后一直停留在 building 界面 解决方案: 1.随便找一个你能运行的as项目 2.打开gradle-wrapper.properties,文件目录:项目/g ...
- webServer-----Spring 集成cxf笔录
目前webserver主要有俩中方式:1,传统的webserver标准集成方式-生成WSDL的xml文档. 2, 基于restful风格的webserver java RESTful We ...
- linux作业
第二单元 (1)以root用户登录GNOME图形界面 语言支持选择为汉语 (2)使用快捷键切换到虚拟终端2,使用普通用户身份登录,查看系统提示符 (3)使用命令退出虚拟终端2上登录的用户 (4)使用快 ...
- postgresql 常用数据库命令
连接数据库, 默认的用户和数据库是postgrespsql -U user -d dbname 切换数据库,相当于MySQL的use dbname\c dbname列举数据库,相当于mysql的sho ...
- IT 网址
蒋金楠 (Artech) WCF ,asp.net等 博客地址:http://www.cnblogs.com/artech/tag/WCF/ 伍华聪 ...
- 用 CallerMemberName Attribute 和 EqualityComparer 统一处理类的属性值变化
当需要实现类似 INotifyPropertyChanged 这样的接口的时候,每一个属性去判断值是否变化,然后触发事件什么的,太麻烦了,如果能用一个方法统一处理就好了. 好在真的可以做到.这个博文说 ...
- 进击的Python【第七章】:Python的高级应用(四)面向对象编程进阶
Python的高级应用(三)面向对象编程进阶 本章学习要点: 面向对象高级语法部分 静态方法.类方法.属性方法 类的特殊方法 反射 异常处理 Socket开发基础 一.面向对象高级语法部分 静态方法 ...
- Gridview样式的CSS控制
页面代码: .<asp:GridView ID="gvCustomres" runat="server" . DataSourceID="cus ...
- JQuery表格插件DataTables 当前页合计功能
公司项目表格插件使用的是DataTables,最近添加表合计功能,发现百度统一都是如图类型的代码,不知道是配置问题还是怎么了,在我的页面下根本不能用 var addd=0; $(document).r ...
- Xmarks Hosts
使用 Chrome 浏览器,但实在是没精力去各种FQ和寻找 Google 的 hosts 来同步书签,没办法只好折中使用 Xmarks 来单独同步书签,没想到最近 Xmarsks 又不好使了.再次标记 ...