qboimathtest1 t2 配对
题目
有1~n一共n个数,n为偶数。小Q要把这n个数随机地两两配对。令每一对的权值为它们两个数的和。小Q想要知道这n/2对里最大的权值的期望是多少。请输出答案对10^9+7取模的值。
【输入】
一行一个正整数 N。
【输出】
一行一个整数,表示答案对10^9+7取模的值。
【输入样例】
4
【输出样例】
6
对于 20%的数据: 1 ≤ N ≤ 10。
对于 40%的数据: 1 ≤ N ≤ 2000。
对于 100%的数据: 1 ≤ N ≤500000。
分析
见袁神博客
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const long long mod=1e9+;
long long c[];
inline long long pw(long long a,long long p){
a%=mod;
long long res=;
while(p){
if(p&)res=res*a%mod;
a=a*a%mod;
p/=;
}
return res;
}
int main(){
long long n,m,i,j,k,v,ans=,be=;
scanf("%lld",&n);
c[]=;
for(i=;i<=n/;i++)
c[i]=c[i-]*(i*-)%mod;
v=*n-;
for(i=n+;i<=v;i++){
long long low=(*n-i+)/;
long long now=pw(i-n,low)%mod*c[n/-low]%mod;
ans=(ans+(now-be+mod)%mod*i%mod)%mod;
be=now;
}
ans=ans*pw(c[n/],mod-)%mod;
cout<<ans<<endl;
return ;
}
qboimathtest1 t2 配对的更多相关文章
- 【BZOJ4205】卡牌配对
Description 现在有一种卡牌游戏,每张卡牌上有三个属性值:A,B,C.把卡牌分为X,Y两类,分别有n1,n2张. 两张卡牌能够配对,当且仅当,存在至多一项属性值使得两张卡牌该项属性值互质,且 ...
- 5.12 省选模拟赛 T2 贪心 dp 搜索 差分
LINK:T2 这题感觉很套路 但是不会写. 区间操作 显然直接使用dp不太行 直接爆搜也不太行复杂度太高. 容易想到差分 由于使得整个序列都为0 那么第一个数也要i差分前一个数 强行加一个0 然后 ...
- BZOJ 4205: 卡牌配对
4205: 卡牌配对 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 173 Solved: 76[Submit][Status][Discuss] ...
- [Noip2016]蚯蚓 D2 T2 队列
[Noip2016]蚯蚓 D2 T2 Description 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳 蚤国的跳蚤也拿蚯 ...
- SDOI 2016 数字配对
题目大意:给定n个数字以及每个数字的个数和权值,将满足条件的数字配对,使得总代价不小于0,且配对最多 最大费用最大流拆点,对于每个点,连一条由S到该点的边,容量为b,花费为0,再连一条到T的边 对于每 ...
- 【bzoj4514】 Sdoi2016—数字配对
http://www.lydsy.com/JudgeOnline/problem.php?id=4514 (题目链接) 题意 n个数,每个数值为a[i],有b[i]个,权值为c[i].若两个数能配对当 ...
- T2 Func<in T1,out T2>(T1 arg)
委托调用方法的4种方式. using System; using System.Collections.Generic; namespace ConsoleApplication1 { delegat ...
- Hotelling T2检验和多元方差分析
1.1 Hotelling T2检验 Hotelling T2检验是一种常用多变量检验方法,是单变量检验的自然推广,常用于两组均向量的比较. 设两个含量分析为n,m的样本来自具有公共协方差阵的q维正态 ...
- SPSS数据分析—配对Logistic回归模型
Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现 在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配 ...
随机推荐
- 算法(Algorithms)第4版 练习 2.3.17
关键代码: public static void sort(Comparable[] a) { StdRandom.shuffle(a);//eliminate dependence on input ...
- CodeForces 455C Civilization(并查集+树直径)
好久没有写过图论的东西了,居然双向边要开两倍空间都忘了,不过数组越界cf居然给我报MLE??这个题题意特别纠结,一开始一直不懂添加的边长是多长... 题意:给你一些点,然后给一些边,注意没有重边 环, ...
- 大话设计模式--适配器模式 Adapter -- C++实现实例
1.适配器模式: 将一个类的接口转换为客户希望的另一个接口,使得原来由于接口不能一起工作的那些类一起工作. 适配器模式一般用于希望复用一些现存的类,但是接口又与复用环境要求不一致的情况. 适配器模式分 ...
- WCF REST开启Cors 解决 No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost' is therefore not allowed access. The response had HTTP status code 405.
现象: 编写了REST接口: [ServiceContract] public interface IService1 { [OperationContract] [WebInvoke(UriTemp ...
- Javascript函数的参数arguments
arguments Description 在所有的函数中有一个arguments对象,arguments对象指向函数的参数,arguments object is an Array-like obj ...
- 一个ClientDataset的Delta与XML相互转换
一个ClientDataset的Delta与XML相互转换的文章: 大家都知道TClientDataSet的Delta属性保存数据集的变化,但是Delta是OleVariant类型的属性,这样如果用D ...
- 十大最流行PHP框架排名
PHP 是一个被广泛使用的来进行Web开发的脚本语言.虽然有很多其它可供选择的Web开发语言,像:ASP 和Ruby,但是PHP是目前为止世界上最为流行的. 那么,是什么让PHP如此流行?PHP 如此 ...
- js修改css时如何考虑兼容性问题es5+es6
es5的写法 var elementStyle = document.createElement('div').style var vendor = (function(){ let transfor ...
- 2017-2018-1 20179203 《Linux内核原理与分析》第五周作业
攥写人:李鹏举 学号:20179203 ( 原创作品转载请注明出处) ( 学习课程:<Linux内核分析>MOOC课程http://mooc.study.163.com/course/US ...
- ngCookies都做了什么
根据官方的api文档,ngCookies的$cookieStore服务,提供了这样几个方法: 1.get(key); 2.put(key, value); 3.remove(key); 以上方法都是对 ...