【BZOJ5020】[THUWC 2017]在美妙的数学王国中畅游 泰勒展开+LCT
【BZOJ5020】[THUWC 2017]在美妙的数学王国中畅游
Description
Input
Output
Sample Input
1 1 0
3 0.5 0.5
3 -0.5 0.7
appear 0 1
travel 0 1 0.3
appear 0 2
travel 1 2 0.5
disappear 0 1
appear 1 2
travel 1 2 0.5
Sample Output
1.67942554e+000
1.20000000e+000
题解:一看到删边加边那肯定就是LCT了,但是在pushup的时候如何维护这些奇奇怪怪的函数呢?我们需要一种方法将这些函数进行合并,不难想到泰勒展开。
下面列出e和sin的生成函数:
但是题中的x不光有系数,还有常数项,怎么办呢?暴力展开!将公式中的x替换成(ax+b),然后预处理组合数,用二项式定理暴力展开即可。
实测我们的生成函数大概维护到x^17即可,这样的话我们LCT中的每个节点相当于都要维护它的生成函数以及子树的生成函数和,所以pushup一次就是O(17)的,修改一个节点就是O(17*17)的。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
using namespace std;
const int maxn=100010;
const int D=17;
typedef double db;
int n,m;
char str[100];
int typ[maxn];
db A[maxn],B[maxn],jc[20],c[20][20],at[20],bt[20];
struct node
{
db v[20],s[20],A,B;
int fa,ch[2],siz,rev,typ;
void calc()
{
int i,j,f;
memset(v,0,sizeof(v));
if(typ==1)
{
for(at[0]=bt[0]=1,i=1;i<=D;i++) at[i]=at[i-1]*A,bt[i]=bt[i-1]*B;
for(i=1;i<=D;i+=2)
{
f=(i%4==1)?1:-1;
for(j=0;j<=i;j++) v[j]+=f*at[j]*bt[i-j]*c[i][j]/jc[i];
}
}
if(typ==2)
{
for(at[0]=bt[0]=1,i=1;i<=D;i++) at[i]=at[i-1]*A,bt[i]=bt[i-1]*B;
for(i=0;i<=D;i++) for(j=0;j<=i;j++) v[j]+=at[j]*bt[i-j]*c[i][j]/jc[i];
}
if(typ==3) v[0]=B,v[1]=A;
}
}s[maxn];
inline bool isr(int x){return s[s[x].fa].ch[0]!=x&&s[s[x].fa].ch[1]!=x;}
inline void pushup(int x)
{
for(int i=0;i<=D;i++) s[x].s[i]=s[s[x].ch[0]].s[i]+s[s[x].ch[1]].s[i]+s[x].v[i];
s[x].siz=s[s[x].ch[0]].siz+s[s[x].ch[1]].siz+1;
}
inline void pushdown(int x)
{
if(s[x].rev)
{
swap(s[x].ch[0],s[x].ch[1]);
if(s[x].ch[0]) s[s[x].ch[0]].rev^=1;
if(s[x].ch[1]) s[s[x].ch[1]].rev^=1;
s[x].rev=0;
}
}
void updata(int x)
{
if(!isr(x)) updata(s[x].fa);
pushdown(x);
}
inline void rotate(int x)
{
int y=s[x].fa,z=s[y].fa,d=(x==s[y].ch[1]);
if(!isr(y)) s[z].ch[y==s[z].ch[1]]=x;
s[x].fa=z,s[y].fa=x,s[y].ch[d]=s[x].ch[d^1];
if(s[x].ch[d^1]) s[s[x].ch[d^1]].fa=y;
s[x].ch[d^1]=y;
pushup(y),pushup(x);
}
void splay(int x)
{
updata(x);
while(!isr(x))
{
int y=s[x].fa,z=s[y].fa;
if(!isr(y))
{
if((x==s[y].ch[0])^(y==s[z].ch[0])) rotate(x);
else rotate(y);
}
rotate(x);
}
}
inline void access(int x)
{
for(int y=0;x;splay(x),s[x].ch[1]=y,pushup(x),y=x,x=s[x].fa);
}
inline void maker(int x)
{
access(x),splay(x),s[x].rev^=1;
}
inline void link(int x,int y)
{
maker(x),s[x].fa=y;
}
inline void cut(int x,int y)
{
maker(x),access(y),splay(y),s[y].ch[0]=s[x].fa=0,pushup(y);
}
inline int findr(int x)
{
while(s[x].fa) x=s[x].fa;
return x;
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void init()
{
int i,j;
for(jc[0]=1,i=1;i<=D;i++) jc[i]=jc[i-1]*i;
for(c[0][0]=1,i=1;i<=D;i++)
{
c[i][0]=1;
for(j=1;j<=i;j++) c[i][j]=c[i-1][j-1]+c[i-1][j];
}
}
int main()
{
scanf("%d%d%s",&n,&m,str);
int i,j,a,b;
db x,y,ans;
init();
for(i=1;i<=n;i++) scanf("%d%lf%lf",&s[i].typ,&s[i].A,&s[i].B),s[i].calc(),pushup(i);
for(i=1;i<=m;i++)
{
scanf("%s",str);
if(str[0]=='a') a=rd()+1,b=rd()+1,link(a,b);
if(str[0]=='d') a=rd()+1,b=rd()+1,cut(a,b);
if(str[0]=='m') a=rd()+1,splay(a),scanf("%d%lf%lf",&s[a].typ,&s[a].A,&s[a].B),s[a].calc(),pushup(a);
if(str[0]=='t')
{
a=rd()+1,b=rd()+1,scanf("%lf",&x);
if(findr(a)!=findr(b))
{
printf("unreachable\n");
continue;
}
y=1,ans=0,maker(a),access(b),splay(b);
for(j=0;j<=D;j++,y*=x) ans+=y*s[b].s[j];
printf("%.8le\n",ans);
}
}
return 0;
}//1 1 abc 2 1 1 travel 0 0 1
【BZOJ5020】[THUWC 2017]在美妙的数学王国中畅游 泰勒展开+LCT的更多相关文章
- BZOJ5020: [THUWC 2017]在美妙的数学王国中畅游(LCT,泰勒展开,二项式定理)
Description 数字和数学规律主宰着这个世界. 机器的运转, 生命的消长, 宇宙的进程, 这些神秘而又美妙的过程无不可以用数学的语言展现出来. 这印证了一句古老的名言: ...
- bzoj5020: [THUWC 2017]在美妙的数学王国中畅游
Description 数学王国中,每个人的智商可以用一个属于 [0,1]的实数表示.数学王国中有 n 个城市,编号从 0 到 n−1 ,这些城市由若干座魔法桥连接.每个城市的中心都有一个魔法球,每个 ...
- BZOJ5020 [THUWC 2017]在美妙的数学王国中畅游LCT
题意很明显是要用LCT来维护森林 难点在于如何处理函数之间的关系 我们可以根据题目给的提示关于泰勒展开的式子 将三种函数变成泰勒展开的形式 因为$x∈[0,1]$ 所以我们可以将三个函数在$x_0=0 ...
- bzoj5020 & loj2289 [THUWC 2017]在美妙的数学王国中畅游 LCT + 泰勒展开
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5020 https://loj.ac/problem/2289 题解 这个 appear 和 d ...
- [THUWC 2017]在美妙的数学王国中畅游
bzoj5020 \[答案误差只要小于 10^{-7}\] 题解 Taylor展开式: \[若f(x)的n阶导数在[a, b]内连续,则f(x)在x_{0}\in[a, b]可表示为\] \[f(x) ...
- 解题:THUWC 2017 在美妙的数学王国中畅游
题面 _“数字和数学规律主宰着这个世界.”_ 在 @i207M 帮助下折腾了半天终于搞懂了导数和泰勒展开,引用某学长在考场上的感受:感觉整个人都泰勒展开了 显然是个奇奇怪怪的东西套上LCT,发现直接维 ...
- bzoj 5020(洛谷4546) [THUWC 2017]在美妙的数学王国中畅游——LCT+泰勒展开
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5020 https://www.luogu.org/problemnew/show/P4546 ...
- loj2289 [THUWC 2017]在美妙的数学王国中畅游(LCT+Taylor展开)
link 题目大意: 你需要维护一个树 每个点都有个sin(ax+b)或exp(ax+b)或ax+b 你需要维护一些操作:连边.删边.修改某个点的初等函数.询问某条树链上所有函数带入某个值后权值和或不 ...
- bzoj 5020: [THUWC 2017]在美妙的数学王国中畅游【泰勒展开+LCT】
参考:https://www.cnblogs.com/CQzhangyu/p/7500328.html --其实理解了泰勒展开之后就是水题呢可是我还是用了两天时间来搞懂啊 泰勒展开是到正无穷的,但是因 ...
随机推荐
- UIViewController的生命周期及iOS程序运行顺序
当一个视图控制器被创建,并在屏幕上显示的时候. 代码的运行顺序 1. alloc 创建对象,分配空间 2.init (initWit ...
- hibernate的 lazy 和 fetch 一般配置
fetch 和 lazy 配置用于数据的查询 lazy 参数值常见有 false 和 true,Hibernate3 映射文件中默认lazy = true : fetch 指定了关联对象抓取的方式,参 ...
- JAVA中几种常见集合的使用实例
Java.util.ArrayList(类): *;import java.util.*;public class CollectionTest{//List是一个能包含重复元素的已排序的Collec ...
- depth linear
float ConvertDepth( float depthFromTex, float4 cameraParams ){ const float near = cameraParams.z; co ...
- iOS小技巧 - 为按钮设置不同状态下的背景色
我们知道直接在Storyboard中设置按钮的背景色是不能根据不同状态来更改的,那问题来了,如果我们需要在不同的状态下(比如按钮没有被按下或者被按下),使得按钮呈现不同的背景色怎么办? 比如上图左边是 ...
- JAVA经常使用集合框架使用方法具体解释基础篇二之Colletion子接口List
接着上一篇,接着讲讲集合的知识.上一篇讲了Collection接口.它能够说是集合的祖先了,我们这一篇就说说它的子孙们. 一.Collection的子接口 List:有序(存入和取出的顺序一致).元素 ...
- shell 命令行语句
第一步:ssh免密码登陆[用公钥,私钥] 第二步: #!/bin/bash while read server;do ssh -n $server >& |sed "s/^/$ ...
- [1-6] 把时间当做朋友(李笑来)Chapter 6 【更多思考】 摘录
记住,你不可能百分之百地有效率,至少不可能总是百分之百地有效率. 他们的效率很差.根源在于,他们其实只做简单的事情,而回避那些有难度的工作. 好像丢钱包的人都不是“故意”丢的一样,办事拖拉的人大多并非 ...
- iOS应用程序开发之内购
内购简介 配置iTunes Connect iOS客户端开发工作 一.内购简介 1⃣️通过苹果应用程序商店有三种主要赚钱的方式: –直接收费(与国内大部分用户的消费习惯相悖,如果直接收费,不要设置为6 ...
- 【SpringMVC学习09】SpringMVC与前台的json数据交互
json数据格式在接口调用中.html页面中比较常用,json格式比较简单,解析也比较方便,所以使用很普遍.在springmvc中,也支持对json数据的解析和转换,这篇文章主要总结一下springm ...