题面

题解

不管$a$的限制

我们要求的东西是:($\sigma(x)$是$x$的约数个数和)

$ \sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j)) $

设$f(x)=\sigma(x)$,则我们可以找到一个$g$使得$f=1*g$,那么$g=\mu*f$

所以$g(x)=\sum_{d|x}\mu(d)\sigma(\frac xd)$

带入原式得:

$ \sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j)) \\ =\sum_{d=1}^n g(d)\left\lfloor\frac nd\right\rfloor \left\lfloor\frac md\right\rfloor \\ =\sum_{d=1}^n \left\lfloor\frac nd\right\rfloor \left\lfloor\frac md\right\rfloor \sum_{x|d}\mu(x)\sigma(\frac dx) $

我们可以筛出$g(x)$的值来$O(\sqrt n)$回答

但是现在有$a$的限制,就可以离线将询问排序,将$\sigma$排序,加入相对应的位置就可以了。

代码

#include<cstdio>
#include<cstring>
#include<cctype>
#include<climits>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define clear(x, y) memset(x, y, sizeof(x)) inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
} const int maxn(100010);
bool not_prime[maxn];
int prime[maxn], cnt, n, T, ans[maxn];
int mu[maxn], sig[maxn], sumd[maxn], powd[maxn]; struct qry { int n, m, a, id; } q[maxn];
int p[maxn], c[maxn];
inline bool operator < (const qry &a, const qry &b) { return a.a < b.a; } void init(int N)
{
not_prime[1] = true; sig[1] = mu[1] = p[1] = 1;
for(RG int i = 2; i <= N; i++)
{
p[i] = i;
if(!not_prime[i]) prime[++cnt] = i, mu[i] = -1,
sig[i] = i + 1, sumd[i] = i + 1, powd[i] = i;
for(RG int j = 1; j <= cnt && i * prime[j] <= N; j++)
{
not_prime[i * prime[j]] = true;
if(i % prime[j])
{
mu[i * prime[j]] = -mu[i];
sig[i * prime[j]] = sig[i] * sig[prime[j]];
sumd[i * prime[j]] = prime[j] + 1;
powd[i * prime[j]] = prime[j];
}
else
{
powd[i * prime[j]] = powd[i] * prime[j];
sumd[i * prime[j]] = sumd[i] + powd[i * prime[j]];
sig[i * prime[j]] = sig[i] / sumd[i] * sumd[i * prime[j]];
break;
}
}
}
} inline bool cmp(int a, int b) { return sig[a] < sig[b]; }
void add(int x, int v) { while(x <= n) c[x] += v, x += x & -x; }
int query(int x) { int ans = 0; while(x) ans += c[x], x -= x & -x; return ans; }
int solve(int x, int y)
{
int now = 0, pre = 0, ans = 0;
for(RG int i = 1, j; i <= x; i = j + 1)
{
j = std::min(x / (x / i), y / (y / i));
now = query(j); ans += (x / i) * (y / i) * (now - pre);
pre = now;
}
return ans;
} int main()
{
T = read();
for(RG int i = 1; i <= T; i++)
{
q[i] = (qry) {read(), read(), read(), i};
if(q[i].n > q[i].m) std::swap(q[i].n, q[i].m);
n = std::max(n, q[i].n);
}
init(n); std::sort(q + 1, q + T + 1);
std::sort(p + 1, p + n + 1, cmp);
for(RG int i = 1, j = 1; i <= T; i++)
{
for(; j <= n && sig[p[j]] <= q[i].a; ++j)
for(RG int k = p[j]; k <= n; k += p[j])
if(mu[k / p[j]]) add(k, sig[p[j]] * mu[k / p[j]]);
ans[q[i].id] = solve(q[i].n, q[i].m);
}
for(RG int i = 1; i <= T; i++)
{
if(ans[i] < 0) ans[i] += INT_MAX, ++ans[i];
printf("%d\n", ans[i]);
}
return 0;
}

【SDOI2014】数表的更多相关文章

  1. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  2. 【BZOJ 3529】 [Sdoi2014]数表 (莫比乌斯+分块+离线+树状数组)

    3529: [Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有 ...

  3. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  4. 洛咕3312 [SDOI2014]数表

    洛咕3312 [SDOI2014]数表 终于独立写出一道题了...真tm开心(还是先写完题解在写的) 先无视a的限制,设\(f[i]\)表示i的约数之和 不妨设\(n<m\) \(Ans=\su ...

  5. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  6. 洛谷 P3312 [SDOI2014]数表 解题报告

    P3312 [SDOI2014]数表 题目描述 有一张\(N*M\)的数表,其第\(i\)行第\(j\)列(\(1\le i \le n\),\(1 \le j \le m\))的数值为能同时整除\( ...

  7. BZOJ3529 [Sdoi2014]数表 【莫比乌斯反演】

    3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2151 Solved: 1080 [Submit][Status ...

  8. BZOJ[Sdoi2014]数表 莫比乌斯反演

    [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2383  Solved: 1229[Submit][Status][Disc ...

  9. 洛谷P3312 - [SDOI2014]数表

    Portal Solution 共\(T(T\leq2\times10^4)\)组测试数据.给出\(n,m(n,m\leq10^5),a(a\leq10^9)\),求\[ \sum_{i=1}^n\s ...

  10. bzoj [SDOI2014]数表 莫比乌斯反演 BIT

    bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...

随机推荐

  1. echarts柱状图,改变柱状颜色

    在使用echarts产生的柱状图中,有时候自动产生的颜色大不如人意,可以通过以下参数进行修改. series : [ { name:'天数', type:'bar', stack: '天', data ...

  2. ARM汇编之MOV指令

    http://blog.csdn.net/lsywk/article/details/8799837 一.指令格式 MOV{条件}{S}  目的寄存器,源操作数 二.指令详解 MOV指令可完成从另一个 ...

  3. 【[AHOI2009]同类分布】

    这是一篇有些赖皮的题解 (如果不赖皮的话,bzoj上也是能卡过去的) 首先由于我这个非常\(sb\)的方法复杂度高达\(O(171^4)\),所以面对极限的\(1e18\)的数据实在是卡死了 但是这个 ...

  4. linux下mysql忘记密码怎么办

    前言 今天在服务器安装mysql之后,登录发现密码错误,但是我没有设置密码呀,最后百度之后得知,mysql在5.7版本之后会自动创建一个初始密码. 报错如下: [root@mytestlnx02 ~] ...

  5. ROS C++ 规范概要

    一.动机 代码一致才能可读.联调.高效率.高复用.可移植性. 二.命名方式 CamelCased camelCased under_scored ALL_CAPITALS 2.1 Package命名方 ...

  6. 【zigbee】【蓝牙】射频信号放大器兼容AT2401C

    现在科技产品的不断进步,智能家居方面慢慢对信号和距离方面的要求渐渐增加.深圳市动能世纪科技有限公司不断的满足客户需求,推出了一款射频信号放大器AT2401C满足客户距离信号等等的需求.并全方位技术支持 ...

  7. ubuntu 16.04(Windows 10双系统+grub引导)无法进入tt1~tt6(NVIDIA驱动安装相关-黑屏,login loop,分辨率)

    目录 前言回顾 最终解决: 0.关闭x服务 1.禁用nouveau 2.加入 3.更新 4.查找匹配驱动 5.选择推荐版本 6.等待安装后重启,nvidia-smi查看是否安装成功,或者lsmod | ...

  8. codeforces 979 C. Kuro and Walking Route

    C. Kuro and Walking Route time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  9. SQL分页过多时, 如何优化

    问题: 我们经常会使用到分页操作,这里有个问题,在偏移量非常大的时候,它会导致MySQL扫描大量不需要的行然后再抛弃掉.如: , ; 上述这条SQL语句需要查询10020条记录然后只返回最后20条.前 ...

  10. 将select的默认小三角替换成别的图片,且实现点击图片出现下拉框选择option

    最近做项目,要求修改select下拉框的默认三角样式,因为它在不同浏览器的样式不同且有点丑,找找网上也没什么详细修改方法,我就总结一下自己的吧. 目标是做成下图效果: 图一:将默认小三角换成红圈的三角 ...