【LG5018】[NOIP2018pj]对称的二叉树

题面

洛谷

题解

看到这一题全都是用\(O(nlogn)\)的算法过的

考场上写\(O(n)\)算法的我很不开心

然后就发了此篇题解。。。

首先我们可以像树上莫队一样按照 左-右-根 的顺序将这棵树的欧拉序跑下来,

记下开始访问点\(x\)的\(dfs\)序\(L[x]\),和回溯时的\(dfs\)序\(R[x]\)

再将记录欧拉序的数组记为\(P\)

void dfs(int x) {
P[L[x] = ++cnt] = x;
if (t[x].ch[0]) dfs(t[x].ch[0]);
if (t[x].ch[1]) dfs(t[x].ch[1]);
P[R[x] = ++cnt] = x;
t[x].size = t[t[x].ch[0]].size + t[t[x].ch[1]].size + 1;
}

统计出数组\(P\)的两个哈希值,一个是记录点权(\(hs1[0][x]\)),

另一个是记录当前点是左儿子还是右儿子(\(hs2[0][x]\))

for (int i = 1; i <= cnt; i++) hs1[0][i] = hs1[0][i - 1] * base + t[P[i]].v;
for (int i = 1; i <= cnt; i++) hs2[0][i] = hs2[0][i - 1] * base + get(P[i]);

再将这棵树按照 右-左-根 的顺序将这棵树的另一个欧拉序跑下来(记得清空),

记下开始访问点\(x\)的\(dfs\)序\(rL[x]\),和回溯时的\(dfs\)序\(rR[x]\)

void rdfs(int x) {
P[rL[x] = ++cnt] = x;
if (t[x].ch[1]) rdfs(t[x].ch[1]);
if (t[x].ch[0]) rdfs(t[x].ch[0]);
P[rR[x] = ++cnt] = x;
}

再记录一次统计出数组\(P\)的两个哈希值,一个是记录点权(\(hs1[1][x]\)),

另一个是记录当前点是左儿子还是右儿子(\(hs2[1][x]\))(这时候要取异或一下)

    for (int i = 1; i <= cnt; i++) hs1[1][i] = hs1[1][i - 1] * base + t[P[i]].v;
for (int i = 1; i <= cnt; i++) hs2[1][i] = hs2[1][i - 1] * base + (get(P[i]) ^ 1);

其中\(get\)函数:

inline int get(int x) { return t[t[x].fa].ch[1] == x; }

然后我们要怎么判断呢?

先判断左右儿子\(ls\)和\(rs\)的\(size\)是否相等

然后再判断第一遍\(dfs\)左儿子所覆盖的欧拉序内和

第二遍\(dfs\)右儿子所覆盖的欧拉序内两个哈希值相不相等即可

if (getHash(hs1[0], L[ls], R[ls]) != getHash(hs1[1], rL[rs], rR[rs])) continue;
if (getHash(hs2[0], L[ls], R[ls]) != getHash(hs2[1], rL[rs], rR[rs])) continue;

然而常数过大,速度被nlogn吊打

完整代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
namespace IO {
const int BUFSIZE = 1 << 20;
char ibuf[BUFSIZE], *is = ibuf, *it = ibuf;
inline char gc() {
if (is == it) it = (is = ibuf) + fread(ibuf, 1, BUFSIZE, stdin);
return *is++;
}
}
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (ch != '-' && (ch > '9' || ch < '0')) ch = IO::gc();
if (ch == '-') w = -1 , ch = IO::gc();
while (ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = IO::gc();
return w * data;
}
#define MAX_N 1000005
struct Node { int ch[2], fa, size, v; } t[MAX_N];
inline int get(int x) { return t[t[x].fa].ch[1] == x; }
typedef unsigned long long ull;
const ull base = 100007;
ull pw[MAX_N << 1];
ull hs1[2][MAX_N << 1], hs2[2][MAX_N << 1];
ull getHash(ull *hs, int l, int r) { return hs[r] - hs[l - 1] * pw[r - l + 1]; }
int N, L[MAX_N], R[MAX_N], rL[MAX_N], rR[MAX_N], P[MAX_N << 1], cnt;
void dfs(int x) {
P[L[x] = ++cnt] = x;
if (t[x].ch[0]) dfs(t[x].ch[0]);
if (t[x].ch[1]) dfs(t[x].ch[1]);
P[R[x] = ++cnt] = x;
t[x].size = t[t[x].ch[0]].size + t[t[x].ch[1]].size + 1;
}
void rdfs(int x) {
P[rL[x] = ++cnt] = x;
if (t[x].ch[1]) rdfs(t[x].ch[1]);
if (t[x].ch[0]) rdfs(t[x].ch[0]);
P[rR[x] = ++cnt] = x;
}
int main () {
N = gi(); pw[0] = 1;
for (int i = 1; i <= 2 * N; i++) pw[i] = pw[i - 1] * base;
for (int i = 1; i <= N; i++) t[i].v = gi();
for (int x = 1; x <= N; x++) {
int ls = gi(), rs = gi();
if (ls != -1) t[x].ch[0] = ls, t[ls].fa = x;
if (rs != -1) t[x].ch[1] = rs, t[rs].fa = x;
}
dfs(1);
for (int i = 1; i <= cnt; i++) hs1[0][i] = hs1[0][i - 1] * base + t[P[i]].v;
for (int i = 1; i <= cnt; i++) hs2[0][i] = hs2[0][i - 1] * base + get(P[i]);
cnt = 0; rdfs(1);
for (int i = 1; i <= cnt; i++) hs1[1][i] = hs1[1][i - 1] * base + t[P[i]].v;
for (int i = 1; i <= cnt; i++) hs2[1][i] = hs2[1][i - 1] * base + (get(P[i]) ^ 1);
int ans = 1;
for (int x = 1; x <= N; x++) {
int ls = t[x].ch[0], rs = t[x].ch[1];
if (t[ls].size != t[rs].size) continue;
if (getHash(hs1[0], L[ls], R[ls]) != getHash(hs1[1], rL[rs], rR[rs])) continue;
if (getHash(hs2[0], L[ls], R[ls]) != getHash(hs2[1], rL[rs], rR[rs])) continue;
ans = max(ans, t[x].size);
}
printf("%d\n", ans);
return 0;
}

【LG5018】[NOIP2018pj]对称的二叉树的更多相关文章

  1. [NOIP2018PJ]对称二叉树

    [NOIP2018PJ]对称二叉树 这个题正常人看到题面难道不是哈希? 乱写了个树哈希... #include<bits/stdc++.h> using namespace std; co ...

  2. 《剑指offer》第二十八题(对称的二叉树)

    // 面试题28:对称的二叉树 // 题目:请实现一个函数,用来判断一棵二叉树是不是对称的.如果一棵二叉树和 // 它的镜像一样,那么它是对称的. #include <iostream> ...

  3. (剑指Offer)面试题59:对称的二叉树

    题目: 请实现一个函数,用来判断一颗二叉树是不是对称的. 注意,如果一个二叉树同此二叉树的镜像是同样的,定义其为对称的. 思路: 对于一棵二叉树,从根结点开始遍历, 如果左右子结点有一个为NULL,那 ...

  4. 【剑指offer】面试题 28. 对称的二叉树

    面试题 28. 对称的二叉树 题目描述 题目:请实现一个函数,用来判断一颗二叉树是不是对称的.注意,如果一个二叉树同此二叉树的镜像是同样的,定义其为对称的. 解答过程 给定一个二叉树,检查它是否是镜像 ...

  5. 第28题:leetcode101:Symmetric Tree对称的二叉树

    给定一个二叉树,检查它是否是镜像对称的. 例如,二叉树 [1,2,2,3,4,4,3] 是对称的. 1 / \ 2 2 / \ / \ 3 4 4 3 但是下面这个 [1,2,2,null,3,nul ...

  6. 剑指Offer:对称的二叉树【28】

    剑指Offer:对称的二叉树[28] 题目描述 请实现一个函数,用来判断一颗二叉树是不是对称的.注意,如果一个二叉树同此二叉树的镜像是同样的,定义其为对称的. 题目分析 Java题解 /* publi ...

  7. 【Offer】[28] 【对称的二叉树】

    题目描述 思路分析 测试用例 Java代码 代码链接 题目描述 请实现一个函数,用来判断一-棵二叉树是不是对称的.如果一棵二叉树和它的镜像一样,那么它是对称的.  牛客网刷题地址 思路分析 利用前序 ...

  8. php算法题---对称的二叉树

    php算法题---对称的二叉树 一.总结 一句话总结: 可以在isSymmetrical()的基础上再加一个函数comRoot,函数comRoot来做树的递归判断 /*思路:首先根节点以及其左右子树, ...

  9. Leetcode:面试题28. 对称的二叉树

    Leetcode:面试题28. 对称的二叉树 Leetcode:面试题28. 对称的二叉树 Talk is cheap . Show me the code . /** * Definition fo ...

随机推荐

  1. SOJ 4590 简单模拟

    Description Gandtom把家搬到了一个交通便利的地方.今天来通知他的朋友Sidney,但是Sidney好像不在家,出门了,敲门没有人开门.  于是Gandtom把家里的地址写了下来.他担 ...

  2. BZOJ1058:[ZJOI2007]报表统计(Splay,堆)

    Description 小Q的妈妈是一个出纳,经常需要做一些统计报表的工作.今天是妈妈的生日,小Q希望可以帮妈妈分担一些工 作,作为她的生日礼物之一.经过仔细观察,小Q发现统计一张报表实际上是维护一个 ...

  3. 【JavaScript】插件参数的写法

    就是实现复制的一个过程 (function() { var Explode = function(container, params) { 'use strict'; var n = this; if ...

  4. Python自动化之Django中间件

    django中间件 Django请求生命周期 中间件中可以定义方法,分别是 process_request(self,request) process_view(self, request, call ...

  5. QTP基本方法3-----截屏

    1.桌面截屏 Desktop.captureBitMap  path[,bolean] path:保存路径,可选择绝对路径或相对路径 相对路径是保存在脚本保存的目录下编号最大的res目录下. bole ...

  6. PL/SQL Developer修改窗口字体和大小

    工具 → 首选项 → 字体 → 选择, 然后自己调节设置

  7. PHP介绍(PHP入门1)

    BS架构和CS架构 B:Browser:浏览器 S:Server:服务器 C:Client:客户端 BS 浏览器和服务器的关系,通过浏览器来访问服务器,比如:百度.新浪... 优点:只要有浏览器就能访 ...

  8. [iOS]CIFilter滤镜

    - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view, typica ...

  9. vue+echarts实现可拖动节点的折现图(支持拖动方向和上下限的设置)

    本篇文档主要是利用echarts实现可拖动节点的折现图,在echarts中找到了一个demo,传送门:https://echarts.baidu.com/examples/editor.html?c= ...

  10. 二进制mysql安装相关知识

    建议安装5.x版本 高版本没安装经验的慎用 1.1 关闭防火墙systemctl stop firewalld.service #停止firewall#慎用 systemctl disable fir ...