K-近邻算法的直观理解就是:给定一个训练集合,对于新的实例,在训练集合中找到k个与该实例最近的邻居,然后根据“少数服从多数”原则判断该实例归属于哪一类,又称“随大流”

K-近邻算法的三大要素:K值得选取,邻居距离度量,分类决策的制定。

(1)K值选取:通常采用交叉验证选取最优的K值(自己了解)

(2)邻居距离度量:根据不同的应用场景选取相应的距离度量。常见的距离度量有欧几里得距离、曼哈顿距离、马氏距离。同时要注意的是归一化机制。

(3)分类决策制定:一般分为平等投票表决原则和加权投票原则。

import operator
import csv
import math
import random def loadDataSet(filename,split,trainingSet=[],testSet=[]):
#读取本地数据#
with open(filename,'r') as csvfile:
lines=csv.reader(csvfile)
dataset=list(lines)
for x in range(len(dataset)-1):
for y in range (4):
dataset[x][y]=float(dataset[x][y])
if random.random()<split:
trainingSet.append(dataset[x])
else:
testSet.append(dataset[x]) def EuclidDist(instance1,instance2,len):
#求欧几里得距离#
distance=0.0
for x in range(len):
distance+=pow((instance1[x]-instance2[x]),2)
return math.sqrt(distance) def getNeighbors(trainSet,testInstance,k):
#获取最近邻居#
distance=[]
length=len(testInstance)-1
for x in range(len(trainSet)):
dist=EuclidDist(testInstance,trainSet[x],length)
distance.append((trainSet[x],dist))
distance.sort(key=operator.itemgetter(1))
#列表的sort(key)方法用来根据关键字排序
neighbors=[]
for x in range(k):
neighbors.append(distance[x][0])
return neighbors def getClass(neighbors):
#分类与评估函数#
classVotes={}
for x in range(len(neighbors)):
instance_class=neighbors[x][-1]
if instance_class in classVotes:
classVotes[instance_class]+=1
else:
classVotes[instance_class]=1
sortedVotes=sorted(classVotes.items(),key=operator.itemgetter(1),reverse=True)
return sortedVotes[0][0] def getAccuracy(testSet,predictions):
#预测正确率计算#
correct=0
for x in range(len(testSet)):
if testSet[x][-1]==predictions[x]:
correct+=1
return (correct/float(len(testSet)))*100.0 def main():
trainingSet=[]
testSet=[]
split=0.7
loadDataSet('iris.data.csv',split,trainingSet,testSet)
print('训练集合:'+repr(len(trainingSet)))
print('测试集合:'+repr(len(testSet)))
predictions=[]
k=3
for x in range(len(testSet)):
neighbors=getNeighbors(trainingSet,testSet[x],k)
result=getClass(neighbors)
predictions.append(result)
print('>预测='+repr(result)+',实际='+repr(testSet[x][-1]))
accuracy=getAccuracy(testSet,predictions)
print('精确度为:'+repr(accuracy)+'%') main()

针对此代码中的数据来源为UCI机器学习库中的鸢尾花卉数据集,可以直接获取(https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data),也可以下载我转换好的CSV文件(链接:https://pan.baidu.com/s/1YSLhrPMn3RflGE8VDGGbHQ 提取码:42se )

本次范例属于“自己动手丰衣足食”,每个函数都自己实现,可以在入门阶段对K-近邻算法流程有个初步认识,在有了一定基础之后,我们就没有必要重造轮子,可以使用常见的机器学习算法,毕竟其专业性远远目前超过我们自己的程序。例如scikit-learn模块。

K-近邻算法入门的更多相关文章

  1. 数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例)

    数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 简介 scikit-learn 估计器 加载数据集 进行fit训练 设置参数 预处理 流水线 结尾 数据挖掘入门系 ...

  2. Python3入门机器学习 - k近邻算法

    邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代 ...

  3. 算法入门系列2:k近邻算法

    用官方的话来说,所谓K近邻算法(k-Nearest Neighbor,KNN),即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个 ...

  4. 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)

    No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...

  5. 基本分类方法——KNN(K近邻)算法

    在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...

  6. K近邻算法:机器学习萌新必学算法

    摘要:K近邻(k-NearestNeighbor,K-NN)算法是一个有监督的机器学习算法,也被称为K-NN算法,由Cover和Hart于1968年提出,可以用于解决分类问题和回归问题. 1. 为什么 ...

  7. 机器学习实战笔记--k近邻算法

    #encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...

  8. k近邻算法的Java实现

    k近邻算法是机器学习算法中最简单的算法之一,工作原理是:存在一个样本数据集合,即训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中每一数据和所属分类的对应关系.输入没有标签的新数据之后, ...

  9. 从K近邻算法谈到KD树、SIFT+BBF算法

    转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...

  10. 机器学习之K近邻算法(KNN)

    机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...

随机推荐

  1. Oracle 实例管理

    理解初始化参数文件实例由内存中构建它的参数来定义.许多参数(但不是全部)可以在启动后更改.有些参数在启动时就固定了,只能在关闭实例并再次启动时更改. 静态和动态参数文件参数文件由两类:静态参数文件(也 ...

  2. 《Python高性能编程》——列表、元组、集合、字典特性及创建过程

    这里的内容仅仅是本人阅读<Python高性能编程>后总结的一些知识,用于自己更好的了解Python机制.本人现在并不从事计算密集型工作:人工智能.数据分析等.仅仅只是出于好奇而去阅读这本书 ...

  3. 转:介绍几个著名的实用的Java反编译工具,提供下载

    from :http://www.glorze.com/219.html 反编译 众所周知,我们将源代码进行编译,生成可执行的程序或者容器发布包,这个将代码转换的过程就是编译的过程,而反编译就是将这些 ...

  4. VS2015调试,签名时出错: 未在路径 C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\bin\signtool.exe 找到 SignTool.exe

    1.发布项目是出现这个错误网上找了有两种方式, 一种是重新安装VS2015的ClickOnce程序 第二种是修改项目文件的签名 右击项目文件的属性,选择签名,然后把红框内去掉,保存即可.

  5. 网页中的图像<img>

    插入图像 img标记的属性及描述 属性 值 描述 alt text 定义有关图形的短描述 src URL 要显示图像的URL height pixels% 定义图像的高度 width pixels% ...

  6. 搭建最小linux系统

    Busybox简介 • 制作文件系统我们需要使用到Busybox 工具 – 版本为busybox-1.21.1.tar.bz2 – 开源网址是http://www.busybox.net/ – Bus ...

  7. dns欺骗之ettercap

    ettercap是一个基于ARP地址欺骗方式的网络嗅探工具,主要适用于局域网. ettercap是一款现有流行的网络抓包软件,它利用计算机在局域网内进行通信的ARP协议的缺陷进行攻击,在目标与服务器之 ...

  8. 用树莓派和DS18B20做个汽车温度记录仪[原创]

    用树莓派和DS18B20做个汽车温度记录仪[原创] 很想知道夏日阳光暴晒下,汽车内的最高温度以及温度的变化情况.觉得用树莓派和DS18B20来实现应该很简单,于是就尝试捣鼓了一下,半天时间就搞定了,写 ...

  9. 【8086汇编-Day1】预备知识

    菜鸟的8086汇编入门之旅,偶有错处恭请大佬们指正. Ⅰ· 闲说一下 我为什么学汇编?相对于晦涩难懂的01010101011010机器语言(高低电平变化驱动机器做出不同反应),汇编语言用更便于记忆和使 ...

  10. 20155331 《信息安全技术概论》实验二 Windows口令破解

    20155331 <信息安全技术概论>实验二 Windows口令破解 [实验目的] 了解Windows口令破解原理 对信息安全有直观感性认识 能够运用工具实现口令破解 [实验原理] 口令破 ...