线段树+单调栈+前缀和--2019icpc南昌网络赛I

Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values in the interval, multiplied by the smallest value in the interval.

Now she is planning to find the max value of the intervals in her array. Can you help her?

Input

First line contains an integer n(1 \le n \le 5 \times 10 ^5n(1≤n≤5×105).

Second line contains nn integers represent the array a (-10^5 \le a_i \le 10^5)a(−105≤a**i≤105).

Output

One line contains an integer represent the answer of the array.

样例输入复制

5
1 2 3 4 5

样例输出复制

36

思路

算前缀和,以每个a_i为最低点,用单调栈求出a_i的所能影响的范围

若a_i>=0,则maxR-minL

若a_i<0,则minR-min(0,maxL)

minR,和maxL用线段树查询,线段树构建:以前缀和为底,找出范围内的最值

代码

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <sstream>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <iomanip>
#include <stack> using namespace std; typedef long long LL;
const int INF = 0x3f3f3f3f;
const int N = 5e5+5;
const int MOD = 1e9 + 9;
const double pi = 3.1415926; #define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define F(i, l, r) for(int i = l;i <= (r);++i)
#define RF(i, l, r) for(int i = l;i >= (r);--i) LL a[N], sum[N], tree_min[N << 2], tree_max[N << 2];
void build(int l, int r, int rt)
{ if(l == r)
{
tree_min[rt] = tree_max[rt] = sum[l];
return ;
}
int m = (l + r) >> 1;
build(lson);
build(rson);
tree_max[rt] = max(tree_max[rt << 1], tree_max[rt << 1 | 1]);
tree_min[rt] = min(tree_min[rt << 1], tree_min[rt << 1 | 1]);
} LL Query_max(int L, int R, int l, int r, int rt)
{
if(L <= l && r <= R)
return tree_max[rt];
int m = (l + r) >> 1;
LL ans = -1e18;
if(L <= m)
ans = max(ans, Query_max(L, R, lson));
if(R > m)
ans = max(ans, Query_max(L, R, rson));
return ans;
} LL Query_min(int L, int R, int l, int r, int rt)
{
if(L <= l && r <= R)
return tree_min[rt];
int m = (l + r) >> 1;
LL ans = INF;
if(L <= m)
ans = min(ans, Query_min(L, R, lson));
if(R > m)
ans = min(ans, Query_min(L, R, rson));
return ans;
} stack<int> s;
LL rig[N], lef[N];
int main()
{
int n;
cin >> n;
F(i, 1, n)
{
cin >> a[i];
sum[i] = sum[i - 1] + a[i];
}
build(1, n, 1);
F(i, 1, n)
{
while(!s.empty() && a[s.top()] > a[i]) {rig[s.top()] = i - 1;s.pop();}
s.push(i);
}
while(!s.empty())
{
rig[s.top()] = n;
s.pop();
}
RF(i, n, 1)
{
while(!s.empty() && a[s.top()] > a[i]) {lef[s.top()] = i + 1;s.pop();}
s.push(i);
}
while(!s.empty())
{
lef[s.top()] = 1;
s.pop();
}
LL ans = -1e18, t;
F(i, 1, n)
{
if(a[i] > 0)
t = sum[rig[i]] - sum[lef[i] - 1];
else
t = Query_min(i, rig[i], 1, n, 1) - max(0ll, Query_max(lef[i], i, 1, n, 1));
//cout << Query_min(i, rig[i], 1, n, 1) << " " << max(0ll, Query_max(lef[i], i, 1, n, 1)) << endl;
ans = max(ans, t * a[i]);
}
cout << ans << endl;
return 0;
}

线段树+单调栈+前缀和--2019icpc南昌网络赛I的更多相关文章

  1. 牛客多校第四场sequence C (线段树+单调栈)

    牛客多校第四场sequence C (线段树+单调栈) 传送门:https://ac.nowcoder.com/acm/contest/884/C 题意: 求一个$\max {1 \leq l \le ...

  2. Codeforces 781E Andryusha and Nervous Barriers 线段树 单调栈

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF781E.html 题目传送门 - CF781E 题意 有一个矩形,宽为 w ,高为 h .一开始会有 w 个 ...

  3. 洛谷P4425 转盘 [HNOI/AHOI2018] 线段树+单调栈

    正解:线段树+单调栈 解题报告: 传送门! 1551又是一道灵巧连题意都麻油看懂的题,,,,所以先解释一下题意好了,,,, 给定一个n元环 可以从0时刻开始从任一位置出发 每次可以选择向前走一步或者在 ...

  4. Codeforces 1175F - The Number of Subpermutations(线段树+单调栈+双针/分治+启发式优化)

    Codeforces 题面传送门 & 洛谷题面传送门 由于这场的 G 是道毒瘤题,蒟蒻切不动就只好来把这场的 F 水掉了 看到这样的设问没人想到这道题吗?那我就来发篇线段树+单调栈的做法. 首 ...

  5. 2019icpc南昌网络赛_I_Yukino With Subinterval

    题意 给定一个序列,两种操作,单点修改,询问区间\([l,r]\)值域在\([x,y]\)范围内的连续段个数. 分析 原数组为\(a\),构造一个新的数组\(b\),\(b[i]=(a[i]==a[i ...

  6. BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)

    BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...

  7. cdqz2017-test10-rehearsal(CDQ分治&可持久化线段树&单调栈)

    题意: 给出n个三元组 e[i]=(si,ti,wi) 第i个三元组的价值为 Σ w[j] ,j 满足以下4个条件: 1.j<i 2.tj<ti 3.sj<si 4.不存在j< ...

  8. BZOJ3521 [Poi2014]Salad Bar 【线段树 + 单调栈】

    题目链接 BZOJ3521 题解 容易想到用前缀和搞 如果我们令\(p\)为\(1\),\(j\)为\(-1\),记前缀和为\(s[i]\) 我们就是要找到一段区间\([l,r]\),使得 \[\fo ...

  9. sequence(线段树+单调栈) (2019牛客暑期多校训练营(第四场))

    示例: 输入: 31 -1 11 2 3 输出: 3 题意:求最大的(a区间最小值*b区间和) 线段树做法:用单调栈求出每个数两边比b数组大的左右边界,然后用线段树求出每段区间的和sum.最小前缀ls ...

随机推荐

  1. asp.net core 1.1 + mysqlsugar + y-ui Demo

    最近研究下asp.net core 此源码架构 : .net core  mvc 简单三层 依赖注入(.net core自带) mysql + mysqlsugar +sqlsugarcore 需要修 ...

  2. 【笔记】metasploit渗透测试魔鬼训练营-信息搜集

    exploit 漏洞利用代码 编码器模块:免杀.控制 help [cmd] msfcli适合对网络中大量系统统一测试. 打开数据包路由转发功能:/etc/sysctl.conf /etc/rc.loc ...

  3. awk基础02-变量-分隔符-数组

        对任意一门语言都会有变量,在awk中变量分为内置变量和自定义变量. 内置变量:就是预先在awk中定义好的,用户可以直接使用 自定义变量:这种变量为用户自己定义的变量,需要先定义后再使用. 内置 ...

  4. 团体程序设计天梯赛L1-018 大笨钟 2017-03-22 17:29 79人阅读 评论(0) 收藏

    L1-018. 大笨钟 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 微博上有个自称"大笨钟V"的家伙,每 ...

  5. javascript与java的相互调用,纯java的javascript引擎rhino(转载)

    1.下载Rhino安装包,下载地址:官网http://www.mozilla.org/rhino. 2.rhino环境配置,把解压出来的js.jar文件加入到系统的环境变量classpath 3.在命 ...

  6. 试题 C: 数列求值 蓝桥杯

    试题 C: 数列求值本题总分: 10 分[问题描述]给定数列 1, 1, 1, 3, 5, 9, 17, …,从第 4 项开始,每项都是前 3 项的和.求第 20190324 项的最后 4 位数字.[ ...

  7. [label][PHP-Security]PHP Security Program

    本文是通过阅读http://www.nowamagic.net/中的PHP安全变成专题,同时结合个人的一点点开发经验组合而成的. 如果你需要看原文,可以直接访问http://www.nowamagic ...

  8. Receiving Transaction Processor Conundrum

    what would we do if we are faced with a situation to execute a receiving transaction in oracle ebusi ...

  9. 修改TFS附件大小的限制

    在TFS服务器使用浏览器上打开如下地址:http://localhost:8080/tfs/<CollectionName>/WorkItemTracking/v1.0/Configura ...

  10. SQL表连接查询inner join left join right join full join ...

    一.最常见的连接查询 select  s.name,m.mark from student s,mark m  where s.id=m.studentid. 二.内连接-inner join sel ...