[Code+#4]最短路
考虑xor
运算的自反性
我们可以直接枚举二进制位异或来进行转移
这样边数大约是\(n \log n\)级别的
总复杂度\(\Theta((n\log n+m)\log n)\)
#include"cstdio"
#include"cstring"
#include"iostream"
#include"algorithm"
using namespace std;
const int MAXN=1e5+5;
const int MAXM=5e5+5;
int n,m,c,np,s,t;
int h[MAXN],hp[MAXN],ln[MAXN],id[MAXN];
struct rpg{
int li,nx,ln;
}a[MAXM];
void add(int ls,int nx,int ln){a[++np]=(rpg){h[ls],nx,ln};h[ls]=np;}
void up(int x)
{
for(int i=x,j=i>>1;j;i=j,j>>=1){
if(ln[hp[i]]<ln[hp[j]]) swap(hp[i],hp[j]),swap(id[hp[i]],id[hp[j]]);
else break;
}return;
}
void ins(int x)
{
hp[++hp[0]]=x;
id[x]=hp[0];
up(hp[0]);
return;
}
void pop()
{
id[hp[1]]=0;
hp[1]=hp[hp[0]--];
id[hp[1]]=1;
for(int i=1,j=2;j<=hp[0];i=j,j<<=1){
if(j<hp[0]&&ln[hp[j+1]]<ln[hp[j]]) ++j;
if(ln[hp[i]]>ln[hp[j]]) swap(hp[i],hp[j]),swap(id[hp[i]],id[hp[j]]);
else break;
}return;
}
void Dijkstra(int s)
{
memset(ln,0x7f,sizeof(ln));
ln[s]=0;ins(s);
while(hp[0]){
int nw=hp[1];pop();
for(int i=h[nw];i;i=a[i].li){
if(ln[a[i].nx]>ln[nw]+a[i].ln){
ln[a[i].nx]=ln[nw]+a[i].ln;
if(id[a[i].nx]) up(id[a[i].nx]);
else ins(a[i].nx);
}
}for(int i=1;i<=n;i<<=1){
int tmp=nw^i;
if(tmp>n) continue;
if(ln[tmp]>ln[nw]+i*c){
ln[tmp]=ln[nw]+i*c;
if(id[tmp]) up(id[tmp]);
else ins(tmp);
}
}
}return;
}
int main()
{
scanf("%d%d%d",&n,&m,&c);
for(int i=1;i<=m;++i){
int x,y,z;scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}scanf("%d%d",&s,&t);
Dijkstra(s);printf("%d\n",ln[t]);
return 0;
}
[Code+#4]最短路的更多相关文章
- [Code+#4]最短路 (最短路)
[Code+#4]最短路 题目背景 在北纬 91° ,有一个神奇的国度,叫做企鹅国.这里的企鹅也有自己发达的文明,称为企鹅文明.因为企鹅只有黑白两种颜色,所以他们的数学也是以二进制为基础发展的. 比如 ...
- [Code+#4]最短路 解题报告
Luogu · 传送门 Orz THU众大佬,lct(注意不是link-cut-tree,是一个大佬) 这道题很容易让人联想到 最短路,但是最短路需要先 建图: 暴力建出所有边的算法显然是不可行的,因 ...
- luoguP4366 [Code+#4]最短路 最短路
好久没写过博客了.... 本题还是挺有趣的(很水的最短路) 关键在于怎么优化这$n^2$条连边 通常,我们希望用一些边来替代一条边从而减小边集 那么,注意到异或操作可以拆分成按位运算,因此我们只需考虑 ...
- [Luogu] P4366 [Code+#4]最短路
题目背景 在北纬 91° ,有一个神奇的国度,叫做企鹅国.这里的企鹅也有自己发达的文明,称为企鹅文明.因为企鹅只有黑白两种颜色,所以他们的数学也是以二进制为基础发展的. 比如早在 1110100111 ...
- luogu4366 [Code+#4]最短路[优化建边最短路]
显然这里的$n^2$级别的边数不能全建出来,于是盯住xor这个关键点去 瞎猜 探究有没有什么特殊性质可以使得一些边没有必要建出来. 发现一个点经过一次xor $x$,花费$x$这么多代价(先不看$C$ ...
- luogu 4366 [Code+#4]最短路 Dijkstra + 位运算 + 思维
这个题思路十分巧妙,感觉很多题都有类似的套路. 我们发现异或操作其实就是将一个数的二进制的若干个 $0$ 变成 $1$,或者一些 $1$ 变成 $0$. 而每次按照某种顺序一位一位地异或也可以起到同时 ...
- LOJ6354 & 洛谷4366:[Code+#4]最短路——题解
https://loj.ac/problem/6354 https://www.luogu.org/problemnew/show/P4366 题面见上面. 这题很妙,且可能是我傻,感觉这题不太好想. ...
- [Code+#4] 最短路 - 建图优化,最短路
最短路问题,然而对于任意\(i,j\),从\(i\)到\(j\)可以只花费\((i xor j) \cdot C\) 对每个点\(i\),只考虑到\(j\)满足\(j=i xor 2^k, j \le ...
- 【最短路+最大流】上学路线@安徽OI2006
目录 [最短路+最大流]上学路线@安徽OI2006 PROBLEM SOLUTION CODE [最短路+最大流]上学路线@安徽OI2006 PROBLEM 洛谷P4300 SOLUTION 先在原图 ...
随机推荐
- mybatis常用默认配置
设置参数 描述 有效值 默认值 cacheEnable 该配置影响所有映射器中配置的缓存全局开关 true.false true lazyLoadingEnable 延迟加载的全局开关.当它开启时,所 ...
- linux防火墙(五)—— 防火墙的规则备份与还原
一.第一种备份还原用法,使用工具 iptables-save >/opt/iprules.txt iptables-restore < /opt/iprules.txt #注意导入的文件必 ...
- Myeclipse设置自动联想功能
///声明,博客园暂无转载功能,这篇博客是转载自贞心真义. 最近初学Java,正在使用MyEclipse来编写新的项目,刚开始打开MyEclipse感觉这个工具既陌生又熟悉,熟悉之处在于编辑器的几大共 ...
- delphi 10.2 ----memo 的例子 实现基本记事本功能
unit Unit2; interface uses Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, System ...
- 防止过拟合:L1/L2正则化
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...
- Codeforces Global Round 2 部分题解
F.Niyaz and Small Degrees 挺sb的一题,为什么比赛时只过了4个呢 考虑当\(x\)固定的时候怎么做.显然可以树形DP:设\(f_{u,i=0/1}\)表示只考虑\(u\)子树 ...
- django.db.utils.OperationalError: (1071, 'Specified key was too long; max key length is 767 bytes')
环境介绍 Django (2.1) Python 3.5.5 mysqlclient (1.4.2.post1) Mysql 5.6.28 RHEL 7.3 在migrate时候报错 model代码 ...
- 【Kafka源码】Kafka启动过程
一般来说,我们是通过命令来启动kafka,但是命令的本质还是调用代码中的main方法,所以,我们重点看下启动类Kafka.源码下下来之后,我们也可以通过直接运行Kafka.scala中的main方法( ...
- javaweb 实现跨域
现在的一个web应用会涉及到多个地方的restAPi的调用,传统的jsonp虽然支持跨域,但是只是支持get请求. 传统的ajax请求是不支持跨域的,是为了安全考虑. 跨域的思路是跟http机制有关, ...
- memcached 学习笔记 4
memcached真实项目中的应用 1 缓存式的Web应用程序架构 有了缓存的支持,我们可以在传统的app层和db层之间加入cache层,每个app服务器都可以绑定一个mc, 每次数据的读取都可以从m ...