先说下题意,很简单,给n个点的坐标,求距离最近的一对点之间距离的一半。第一行是一个数n表示有n个点,接下来n行是n个点的x坐标和y坐标,实数。

这个题目其实就是求最近点对的距离。主要思想就是分治。先把n个点按x坐标排序,然后求左边n/2个和右边n/2个的最近距离,最后合并。合并要重点说一下,比较麻烦。

首先,假设点是n个,编号为1到n。我们要分治求,则找一个中间的编号mid,先求出1到mid点的最近距离设为d1,还有mid+1到n的最近距离设为d2。这里的点需要按x坐标的顺序排好,并且假设这些点中,没有2点在同一个位置。(若有,则直接最小距离为0了)。

然后,令d为d1, d2中较小的那个点。如果说最近点对中的两点都在1-mid集合中,或者mid+1到n集合中,则d就是最小距离了。但是还有可能的是最近点对中的两点分属这两个集合,所以我们必须先检测一下这种情况是否会存在,若存在,则把这个最近点对的距离记录下来,去更新d。这样我们就可以得道最小的距离d了。

关键是要去检测最近点对,理论上每个点都要和对面集合的点匹配一次,那效率还是不能满足我们的要求。所以这里要优化。怎么优化呢?考虑一下,假如以我们所选的分割点mid为界,如果某一点的横坐标到点mid的横坐标的绝对值超过d1并且超过d2,那么这个点到mid点的距离必然超过d1和d2中的小者,所以这个点到对方集合的任意点的距离必然不是所有点中最小的。

所以我们先把在mid为界左右一个范围内的点全部筛选出来,放到一个集合里。筛选好以后,当然可以把这些点两两求距离去更新d了,不过这样还是很慢,万一满足条件的点很多呢。这里还得继续优化。首先把这些点按y坐标排序。假设排序好以后有cnt个点,编号为0到cnt-1。那么我们用0号去和1到cnt-1号的点求一下距离,然后1号和2到cnt-1号的点求一下距离。。。如果某两个点y轴距离已经超过了d,这次循环就可以直接break了,开始从下一个点查找了.
代码:

 <span style="font-family:FangSong_GB2312;font-size:18px;">#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
int n;
struct node
{
double x;
double y;
}p[];
int a[];
double cmpx(node a,node b)
{
return a.x<b.x;
}
double cmpy(int a,int b)
{
return p[a].y<p[b].y;
}
double min(double a,double b)
{
return a<b?a:b;
}
double dis(node a,node b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double find(int l,int r)
{
if(r==l+)
return dis(p[l],p[r]);
if(l+==r)
return min(dis(p[l],p[r]),min(dis(p[l],p[l+]),dis(p[l+],p[r])));
int mid=(l+r)>>;
double ans=min(find(l,mid),find(mid+,r));
int i,j,cnt=;
for(i=l;i<=r;i++)
{
if(p[i].x>=p[mid].x-ans&&p[i].x<=p[mid].x+ans)
a[cnt++]=i;
}
sort(a,a+cnt,cmpy);
for(i=;i<cnt;i++)
{
for(j=i+;j<cnt;j++)
{
if(p[a[j]].y-p[a[i]].y>=ans) break;
ans=min(ans,dis(p[a[i]],p[a[j]]));
}
}
return ans;
}
int main()
{
int i; while(scanf("%d",&n)!=EOF)
{
if(!n) break;
for(i=;i<n;i++)
scanf("%lf %lf",&p[i].x,&p[i].y);
sort(p,p+n,cmpx);
printf("%.2lf%\n",find(,n-)/);
}
return ;
} </span>

hdu 1007最近点对问题的更多相关文章

  1. zoj 2107&&hdu 1007最近点对问题

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1107 Quoit Design Time Limit: 5 Seconds   ...

  2. hdu 1007 最近点对问题(Splay解法)

    为什么要写这个题..经典啊,当然,别以为我用分治做的,不过主要思想还是那神奇的六个点共存(一个h*2h的矩形中最多能放下多少个点使得两两距离不超过h) 其实我是在这里看到的 http://commun ...

  3. HDU 1007 Quoit Design(二分+浮点数精度控制)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  4. HDU 1007 Quoit Design(经典最近点对问题)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...

  5. HDU 1007 Quoit Design 平面内最近点对

    http://acm.hdu.edu.cn/showproblem.php?pid=1007 上半年在人人上看到过这个题,当时就知道用分治但是没有仔细想... 今年多校又出了这个...于是学习了一下平 ...

  6. HDU 1007:Quoit Design(分治求最近点对)

    http://acm.hdu.edu.cn/showproblem.php?pid=1007 题意:平面上有n个点,问最近的两个点之间的距离的一半是多少. 思路:用分治做.把整体分为左右两个部分,那么 ...

  7. HDU 1007(套圈 最近点对距离)

    题意是求出所给各点中最近点对的距离的一半(背景忽略). 用分治的思想,先根据各点的横坐标进行排序,以中间的点为界,分别求出左边点集的最小距离和右边点集的最小距离,然后开始合并,分别求左右点集中各点与中 ...

  8. hdu 1007 Quoit Design(分治法求最近点对)

    大致题意:给N个点,求最近点对的距离 d :输出:r = d/2. // Time 2093 ms; Memory 1812 K #include<iostream> #include&l ...

  9. HDU 1007 Quoit Design(计算几何の最近点对)

    Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...

随机推荐

  1. jquery实现下拉联动

    很多项目用到这个功能,虽然写了不下5次以上了,一直没做过记录,记录一下,下次直接拷贝了,免得还得要重复写浪费时间. 先上HTML代码: 品牌: <select class="sa&qu ...

  2. css中clear属性的认识

    今天在看博客园的页面布局时发现有不少空白的div只有css属性:clear:both. 然后去W3C文档里和百度补脑了一下,总结如下: 这是之前我写的一段测试代码: <div style=&qu ...

  3. JVM内存管理、JVM垃圾回收机制、新生代、老年代以及永久代

    内存模型 JVM运行时数据区由程序计数器.堆.虚拟机栈.本地方法栈.方法区部分组成,结构图如下所示. JVM内存结构由程序计数器.堆.栈.本地方法栈.方法区等部分组成,结构图如下所示: 1)程序计数器 ...

  4. (三)Linux Shell编程——Shell常用命令(输出、判断、循环、函数、包含)

    3. 常用命令 3.1 输出 3.1.1 echo命令 echo是Shell的一个内部指令,用于在屏幕上打印出指定的字符串.命令格式: echo arg name="coding" ...

  5. java多线程(五)之总结(转)

    引 如果对什么是线程.什么是进程仍存有疑惑,请先Google之,因为这两个概念不在本文的范围之内. 用多线程只有一个目的,那就是更好的利用cpu的资源,因为所有的多线程代码都可以用单线程来实现.说这个 ...

  6. oracle中number对应java数据类型

    本文转自:http://blog.csdn.net/ludongshun2016/article/details/71453125 数据库中为number类型的字段,在Java类型中对应的有Integ ...

  7. HDUOJ-------2844Coins

    Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. C#将Access数据库导出为JSON

    一个Access数据库包含若干首诗歌,每首诗有content.author.title.description四个字段 using System; using System.Data; using S ...

  9. Java优化技巧

    过早的优化是万恶之源. 优化了的代码可读性变差,可改性可适应性变差,可维护性变差. 远离过度优化,优化是个无底洞,把主要精力放在代码逻辑上. 优化的代码是活在当下的,是严重依赖硬件的,不利于表达永恒的 ...

  10. Google地图之OverlayView使用(自定义叠加层)

    Google Maps API 第 3 版提供了用于创建自定义叠加层的 OverlayView 类.OverlayView 是一个基类,提供了您在创建叠加层时必须实现的若干方法.该类还提供了一些方法, ...