【题解】JSOI2011分特产
没sa可suo的,sui题一道……
#include <bits/stdc++.h>
using namespace std;
#define maxn 3000
#define mod 1000000007
#define int long long
int n, m, ans, a[maxn], C[maxn][maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void Pre()
{
for(int i = ; i < maxn; i ++) C[i][] = ;
for(int i = ; i < maxn; i ++)
for(int j = ; j < maxn; j ++)
C[i][j] = (C[i - ][j - ] + C[i - ][j]) % mod;
} int Up(int &x, int y) { x = (x + y) % mod; }
int Get(int x)
{
int ret = ;
for(int i = ; i <= m; i ++)
ret = ret * C[n - x + a[i] - ][n - x - ] % mod;
return ret;
} signed main()
{
n = read(), m = read(); Pre();
for(int i = ; i <= m; i ++) a[i] = read();
for(int i = ; i <= n; i ++)
{
int t = C[n][i] * Get(i) % mod;
Up(ans, (i & ) ? -t : t);
}
printf("%lld\n", (ans + mod) % mod);
return ;
}
【题解】JSOI2011分特产的更多相关文章
- 题解-JSOI2011 分特产
题面 JSOI2011 分特产 有 \(n\) 个不同的盒子和 \(m\) 种不同的球,第 \(i\) 种球有 \(a_i\) 个,用光所有球,求使每个盒子不空的方案数. 数据范围:\(1\le n, ...
- 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥
[BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...
- BZOJ 4710: [Jsoi2011]分特产 [容斥原理]
4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- 4710: [Jsoi2011]分特产
4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...
- 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 99 Solved: 65 Description JYY 带 ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- BZOJ 4710 [Jsoi2011]分特产 解题报告
4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...
- ●BZOJ 4710 [Jsoi2011]分特产
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4710 题解: 容斥,组合先看看这个方案数的计算:把 M 个相同的东西分给 N 个人,每个人可 ...
随机推荐
- 1、maven打包 install package deploy区别
maven package:打包到本项目,一般是在项目target目录下.如果a项目依赖于b项目,打包b项目时,只会打包到b项目下target下,编译a项目时就会报错. maven install:打 ...
- springboot对security的后端配置
一.Spring Security是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架.它提供了一组可以在Spring应用上下文中配置的Bean,充分利用了Spring ...
- 一个非常好用的PHP数组函数
array_column 该函数非常有用,在PHP 5.5中可直接调用. 有如下二维数组,如要抽取每个子数组中的特定项. <?php // Array representing a possib ...
- 电信NB-IOT的温湿度采集器开发记录
1. 首先打开浏览器,登录电信商用服务器,上传profile文件 2. 上传编解码插件在,注意的是,上传编解码插件是电信测试用服务器平台(不同的网址),反正不明白电信搞啥幺蛾子,得两个地方去上传 3. ...
- 【linux】vim常用快捷键(转)
原文链接:https://www.cnblogs.com/tianyajuanke/archive/2012/04/25/2470002.html 1.vim ~/.vimrc 进入配置文件 如果不知 ...
- 用Micro:bit做浇灌系统
利用Micro:bit结合[土壤湿度感测棒]做一个简单的浇灌系统 一.测试土壤湿度感测棒 •材料:土壤湿度感测棒 (万能的淘宝上可以找到) •连接:将[土壤湿度感测棒]的一端接P0.另一端接GND 简 ...
- Lua学习笔记(7): 模块
模块 模块就像是c语言工程项目目录里的.h.c文件或外部依赖项,为某一个文件的代码提供依赖,其实就是把工作分成几个模块,方便项目的管理,提高开发效率和维护效率 在Lua中,模块其实就是一个表,实现方式 ...
- 动态语言的灵活性是把双刃剑 -- 以 Python 语言为例
本文有些零碎,总题来说,包括两个问题:(1)可变对象(最常见的是list dict)被意外修改的问题,(2)对参数(parameter)的检查问题.这两个问题,本质都是因为动态语言(动态类型语言)的特 ...
- PHP中定义常量
PHP中定义常量的方式如下: define(常量名,常量值); //定义常量PUBLISHER define('PUBLISHER', "O'Reilly & Associates& ...
- FivePlus——团队展示
光耀101 <光耀101>是福州大学数计学院计算机专业推出的中国首部程序猿脱发养成节目.由张栋担任发起人,刘晨瑶.畅畅担任导师. 该节目召集了你猜多少位选手,通过任务.训练.考核,让选 ...