A. Magic Mirror

水。

 #include <bits/stdc++.h>
using namespace std; int t;
char s[]; inline bool work()
{
int len = strlen(s);
if (len != ) return false;
if (s[] != 'j' && s[] != 'J') return false;
if (s[] != 'e' && s[] != 'E') return false;
if (s[] != 's' && s[] != 'S') return false;
if (s[] != 's' && s[] != 'S') return false;
if (s[] != 'i' && s[] != 'I') return false;
if (s[] != 'e' && s[] != 'E') return false;
return true;
} inline void Run()
{
scanf("%d", &t);
while (t--)
{
scanf("%s", s);
puts(work() ? "Good guy!" : "Dare you say that again?");
}
} int main()
{
#ifdef LOCAL
freopen("Test.in", "r", stdin);
#endif Run();
return ;
}

B. Mathematical Curse

题意:有n个房间,m个诅咒,每个房间有一个数值,刚开始有一个初始值,每次进入一个房间可以选择消除诅咒或者不消除,消除诅咒只能顺序消除,消除诅咒就是拿初始值和房间的数值做运算,求最后最大的数是多少

思路:$Max[i][j]$ 表示 第i个房间 第j个操作的最大值, $Min[i][j]$ 表示第i个房间第j个操作的最小值

因为乘法 负负相乘可能变得很大

 #include <bits/stdc++.h>
using namespace std; #define N 1010
#define ll long long
#define INFLL 0x3f3f3f3f3f3f3f3f int t, n, m;
int arr[N];
char f[];
ll Max[N][], Min[N][];
ll k, ans; inline void Run()
{
scanf("%d", &t);
while (t--)
{
scanf("%d%d%lld", &n, &m, &k);
for (int i = ; i <= n; ++i) scanf("%d", arr + i);
scanf("%s", f + );
memset(Max, -0x3f, sizeof Max);
memset(Min, 0x3f, sizeof Min);
Max[][] = Min[][] = k; ans = -INFLL;
for (int i = ; i <= n; ++i)
{
Max[i][] = k, Min[i][] = k;
for (int j = ; j <= min(m, i); ++j)
{
Max[i][j] = Max[i - ][j], Min[i][j] = Min[i - ][j];
ll a = Max[i - ][j - ], c = Min[i - ][j - ], b = (ll)arr[i];
if (f[j] == '+')
{
a += b, c += b;
}
else if (f[j] == '-')
{
a -= b, c -= b;
}
else if (f[j] == '*')
{
a *= b, c *= b;
}
else if (f[j] == '/')
{
a /= b, c /= b;
}
if (a < c) swap(a, c);
Max[i][j] = max(Max[i][j], a);
Min[i][j] = min(Min[i][j], c);
//printf("%d %d %lld %lld\n", i, j, Max[i][j], Min[i][j]);
}
ans = max(ans, Max[i][m]);
}
printf("%lld\n", ans);
}
} int main()
{
#ifdef LOCAL
freopen("Test.in", "r", stdin);
#endif Run();
return ;
}

C. Password

留坑。

D. Sequence

留坑。

E. Jiu Yuan Wants to Eat

题意:四种操作。

思路:将取反看成加法和乘法   例如:Not(1000) = 1111 - 1000

然后树链剖分维护 + 线段树

 #include <bits/stdc++.h>
using namespace std; #define N 100010
#define ull unsigned long long const ull D = ; struct Edge
{
int to, nx;
inline Edge() {}
inline Edge(int to, int nx) : to(to), nx(nx) {}
}edge[N << ]; int n, q;
int head[N], pos;
int top[N], fa[N], deep[N], num[N], p[N], fp[N], son[N], tot; inline void Init()
{
memset(head, -, sizeof head); pos = ;
memset(son, -, sizeof son); tot = ;
fa[] = ; deep[] = ;
} inline void addedge(int u, int v)
{
edge[++pos] = Edge(v, head[u]); head[u] = pos;
} inline void DFS(int u)
{
num[u] = ;
for (int it = head[u]; ~it; it = edge[it].nx)
{
int v = edge[it].to;
if (v == fa[u]) continue;
fa[v] = u; deep[v] = deep[u] + ;
DFS(v); num[u] += num[v];
if (son[u] == - || num[v] > num[son[u]]) son[u] = v;
}
} inline void getpos(int u, int sp)
{
top[u] = sp;
p[u] = ++tot;
fp[tot] = u;
if (son[u] == -) return;
getpos(son[u], sp);
for (int it = head[u]; ~it; it = edge[it].nx)
{
int v = edge[it].to;
if (v != son[u] && v != fa[u])
getpos(v, v);
}
} struct node
{
int l, r;
ull sum, lazy[];
inline node() {}
inline node(int _l, int _r)
{
l = _l, r = _r;
sum = ;
lazy[] = , lazy[] = ;
}
}tree[N << ]; inline void pushup(int id)
{
tree[id].sum = tree[id << ].sum + tree[id << | ].sum;
} inline void work0(node &r, ull lazy)
{ r.sum = r.sum + lazy * (r.r - r.l + );
r.lazy[] = r.lazy[] + lazy;
} inline void work1(node &r, ull lazy)
{
r.sum = r.sum * lazy;
r.lazy[] = r.lazy[] * lazy;
r.lazy[] *= lazy;
} inline void pushdown(int id)
{
if (tree[id].l >= tree[id].r) return;
if (tree[id].lazy[] != )
{
ull lazy = tree[id].lazy[]; tree[id].lazy[] = ;
work1(tree[id << ], lazy);
work1(tree[id << | ], lazy);
}
if (tree[id].lazy[])
{
ull lazy = tree[id].lazy[]; tree[id].lazy[] = ;
work0(tree[id << ], lazy);
work0(tree[id << | ], lazy);
}
} inline void build(int id, int l, int r)
{
tree[id] = node(l, r);
if (l == r) return;
int mid = (l + r) >> ;
build(id << , l, mid);
build(id << | , mid + , r);
} inline void update(int id, int l, int r, int vis, ull val)
{
if (tree[id].l >= l && tree[id].r <= r)
{
if (vis == )
work1(tree[id], val);
else
work0(tree[id], val);
return;
}
pushdown(id);
int mid = (tree[id].l + tree[id].r) >> ;
if (l <= mid) update(id << , l, r, vis, val);
if (r > mid) update(id << | , l, r, vis, val);
pushup(id);
} ull anssum; inline void query(int id, int l, int r)
{
if (tree[id].l >= l && tree[id].r <= r)
{
anssum += tree[id].sum;
return;
}
pushdown(id);
int mid = (tree[id].l + tree[id].r) >> ;
if (l <= mid) query(id << , l, r);
if (r > mid) query(id << | , l, r);
pushup(id);
} inline void change(int u, int v, int vis, ull val)
{
int fu = top[u], fv = top[v];
while (fu != fv)
{
if (deep[fu] < deep[fv])
{
swap(fu, fv);
swap(u, v);
}
update(, p[fu], p[u], vis, val);
u = fa[fu]; fu = top[u];
}
if (deep[u] > deep[v]) swap(u, v);
update(, p[u], p[v], vis, val);
} inline void sum(int u, int v)
{
int fu = top[u], fv = top[v];
anssum = ;
while (fu != fv)
{
if (deep[fu] < deep[fv])
{
swap(fu, fv);
swap(u, v);
}
query(, p[fu], p[u]);
u = fa[fu], fu = top[u];
}
if (deep[u] > deep[v]) swap(u, v);
query(, p[u], p[v]);
} inline void Run()
{
while (scanf("%d", &n) != EOF)
{
Init();
for (int i = , u; i <= n; ++i)
{
scanf("%d", &u);
addedge(u, i);
}
DFS(); getpos(, ); build(, , n);
scanf("%d", &q);
int op, u, v; ull val;
for (int i = ; i <= q; ++i)
{
scanf("%d%d%d", &op, &u, &v);
if (op <= )
{
scanf("%llu", &val);
change(u, v, op - , val);
}
else if (op == )
{
change(u, v, , -);
change(u, v, , D);
}
else
{
sum(u, v);
printf("%llu\n", anssum);
}
}
}
} int main()
{
#ifdef LOCAL
freopen("Test.in", "r", stdin);
#endif Run();
return ;
}

F. Modular Production Line

留坑。

G. Give Candies

题意:有n颗糖,有n个人,按顺序出列,每次随机给那个人一些糖(至少一颗),分完为止,求有多少方案

思路:规律是$2^{n - 1}$ 根据费马小定理  $a^{p - 1} = 1 \pmod p$ 那么 只要 先用 $(n - 1)  mod (MOD - 1)$ 再快速幂

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<map> using namespace std; typedef long long ll; const int MOD = (int)1e9 + ;
const int INF = 0x3f3f3f3f;
const int maxn = (int)1e5 + ; inline ll qpow(ll n, ll x)
{
ll res = ;
while (n)
{
if (n & ) res = (res * x) % MOD;
x = (x*x) % MOD;
n >>= ;
}
return res;
} int t;
char str[maxn]; inline void RUN()
{
scanf("%d", &t);
while (t--)
{
scanf("%s", str);
ll n = ;
int len = strlen(str);
for (int i = ; i < len; ++i)
{
n = n * + str[i] - '';
n %= (MOD - );
}
n = (n - + (MOD - )) % (MOD - );
//cout << n << endl;
ll ans = qpow(n, );
printf("%lld\n", ans);
}
} int main()
{
#ifdef LOCAL_JUDGE
freopen("Text.txt", "r", stdin);
#endif // LOCAL_JUDGE RUN(); #ifdef LOCAL_JUDGE
fclose(stdin);
#endif // LOCAL_JUDGE }

H. String and Times

题意:求出有多少子串的出现次数在[A, B] 之间

思路:后缀自动机,出现次数至少为A 的减去 出现次数知道为B + 1

 #include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 200010 char s[N]; struct SAM {
int p, q, np, nq, cnt, lst, a[N][], l[N], f[N], tot;
int Tr(char c) { return c - 'A'; }
int val(int c) { return l[c] - l[f[c]]; }
SAM() { cnt = ; lst = ++cnt; }
void Initialize() {
memset(l, , sizeof(int)*(cnt + ));
memset(f, , sizeof(int)*(cnt + ));
for (int i = ; i <= cnt; i++)for (int j = ; j<; j++)a[i][j] = ;
cnt = ; lst = ++cnt;
}
void extend(int c) {
p = lst; np = lst = ++cnt; l[np] = l[p] + ;
while (!a[p][c] && p)a[p][c] = np, p = f[p];
if (!p) { f[np] = ; }
else {
q = a[p][c];
if (l[p] + == l[q])f[np] = q;
else {
nq = ++cnt; l[nq] = l[p] + ;
memcpy(a[nq], a[q], sizeof(a[q]));
f[nq] = f[q]; f[np] = f[q] = nq;
while (a[p][c] == q)a[p][c] = nq, p = f[p];
}
}
}
int b[N], x[N], r[N];
void build() {
int len = strlen(s + );
for (int i = ; i <= len; i++)extend(Tr(s[i]));
memset(r, , sizeof(int)*(cnt + ));
memset(b, , sizeof(int)*(cnt + ));
for (int i = ; i <= cnt; i++)b[l[i]]++;
for (int i = ; i <= len; i++)b[i] += b[i - ];
for (int i = ; i <= cnt; i++)x[b[l[i]]--] = i;
for (int i = p = ; i <= len; i++) { p = a[p][Tr(s[i])]; r[p]++; }
for (int i = cnt; i; i--)r[f[x[i]]] += r[x[i]];
}
void solve() {
ll ans = ;
int A, B;
build();
scanf("%d %d", &A, &B);
// cnt 为不同子串个数 r[x[i]] 为第i个不同子串 出现的次数
for (int i = ; i <= cnt; i++)if (r[x[i]] >= A) ans += val(x[i]);
for (int i = ; i <= cnt; i++)if (r[x[i]] >= B + ) ans -= val(x[i]);
printf("%lld\n", ans);
}
}sam; inline void Run()
{
while (scanf("%s", s + ) != EOF)
{
sam.Initialize();
sam.solve();
}
} int main()
{
#ifdef LOCAL
freopen("Test.in", "r", stdin);
#endif Run();
return ;
}

I. Save the Room

水。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<map> using namespace std; typedef long long ll; const int MOD = (int)1e9 + ;
const int INF = 0x3f3f3f3f;
const int maxn = (int)1e5 + ; int a, b, c; inline void RUN()
{
while (~scanf("%d %d %d", &a, &b, &c))
{
if (a % == || b % == || c % == )
{
puts("Yes");
}
else
{
puts("No");
}
}
} int main()
{
#ifdef LOCAL_JUDGE
freopen("Text.txt", "r", stdin);
#endif // LOCAL_JUDGE RUN(); #ifdef LOCAL_JUDGE
fclose(stdin);
#endif // LOCAL_JUDGE }

J. Participate in E-sports

题意:判断$\frac {(n - 1)(n)}{2}$ 和 $n$ 是不是平方数

思路:二分开方法

 import java.math.BigInteger;
import java.util.Scanner; public class Main
{
public static BigInteger check(BigInteger n,BigInteger x) {
BigInteger ans=BigInteger.valueOf(1);
BigInteger a=BigInteger.valueOf(1);
for(BigInteger i=BigInteger.ZERO;i.compareTo(n)<0;i=i.add(a)) {
ans=ans.multiply(x);
}
return ans;
}
static BigInteger Get(BigInteger m) {
BigInteger l=BigInteger.ZERO;
BigInteger a=BigInteger.valueOf(2);
BigInteger b=BigInteger.valueOf(1);
BigInteger r=BigInteger.valueOf(1);
BigInteger mid=BigInteger.ZERO;
while(check(BigInteger.valueOf(2),r).compareTo(m)<=0) {
l=r;
r=r.multiply(a);
}
while(l.compareTo(r)<=0) {
mid=l.add(r).divide(a);
if(check(BigInteger.valueOf(2),mid).compareTo(m)<=0) l=mid.add(b);
else r=mid.subtract(b);
}
return r; //返回的是开方后的值
} public static boolean ok(BigInteger n)
{
BigInteger x = Get(n);
if (x.multiply(x).compareTo(n) == 0) return true;
return false;
} public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
int t = in.nextInt();
for (int kase = 1; kase <= t; ++kase)
{
// System.out.println("bug");
BigInteger n = in.nextBigInteger();
BigInteger nn = n.multiply(n.subtract(BigInteger.ONE)).divide(BigInteger.valueOf(2));
boolean flag[] = new boolean[2];
flag[0] = ok(n); flag[1] = ok(nn);
if (flag[0] && flag[1]) System.out.println("Arena of Valor");
else if (flag[0]) System.out.println("Hearth Stone");
else if (flag[1]) System.out.println("Clash Royale");
else System.out.println("League of Legends");
}
in.close();
}
}

K. Transport Ship

题意: 有n种船,每种船有$v[i]$容量,每种船有$2^{c[i]} - 1$ 个,每次询问s,求能把s刚好装下的船的分配方案有多少

思路:多重背包+记录方案数

 #include <bits/stdc++.h>
using namespace std; #define N 10010
#define ll long long
#define INF 0x3f3f3f3f const ll MOD = (ll)1e9 + ; int Bit[]; inline void Init()
{
Bit[] = ;
for (int i = ; i <= ; ++i) Bit[i] = (Bit[i - ] << );
for (int i = ; i <= ; ++i) --Bit[i];
} int t, n, q;
int v[], c[];
ll dp[N];
ll f[N]; inline void Run()
{
Init();
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &n, &q);
for (int i = ; i <= n; ++i)
{
scanf("%d%d", v + i, c + i);
c[i] = Bit[c[i]];
}
memset(f, , sizeof f);
dp[] = ; f[] = ;
int m = ;
for (int i = ; i <= m; ++i) dp[i] = -INF;
for (int i = ; i <= n; ++i)
{
if (v[i] * c[i] >= m)
{
for (int j = v[i]; j <= m; ++j)
{
dp[j] = max(dp[j], dp[j - v[i]] + v[i]);
if (dp[j] == dp[j - v[i]] + v[i])
f[j] = (f[j] + f[j - v[i]]) % MOD;
}
}
else
{
int tmp = c[i];
for (int k = ; k < tmp; tmp -= k, k <<= )
{
for (int j = m; j >= k * v[i]; --j)
{
int w = k * v[i];
dp[j] = max(dp[j], dp[j - w] + w);
if (dp[j] == dp[j - w] + w)
f[j] = (f[j] + f[j - w]) % MOD;
}
}
for (int j = m; j >= tmp * v[i]; --j)
{
int w = tmp * v[i];
dp[j] = max(dp[j], dp[j - w] + w);
if (dp[j] == dp[j - w] + w)
f[j] = (f[j] + f[j - w]) % MOD;
}
}
}
for (int i = , id; i <= q; ++i)
{
scanf("%d", &id);
printf("%lld\n", f[id]);
}
}
} int main()
{
#ifdef LOCAL
freopen("Test.in", "r", stdin);
#endif Run();
return ;
}

L. Poor God Water

线性递推

 #include<bits/stdc++.h>
using namespace std;
#define mst(a,b) memset((a),(b),sizeof(a)) typedef long long ll;
const int maxn = ;
const ll mod = 1e9 + ;
const int INF = 0x3f3f3f3f;
const double eps = 1e-; ll fast_mod(ll a, ll n, ll Mod)
{
ll ans = ;
a %= Mod;
while (n)
{
if (n & ) ans = (ans*a) % Mod;
a = (a*a) % Mod;
n >>= ;
}
return ans;
} namespace Dup4
{
ll res[maxn], base[maxn], num[maxn], md[maxn];
vector<int>vec;
void mul(ll *a, ll *b, int k)
{
for (int i = ; i < * k; i++) num[i] = ;
for (int i = ; i < k; i++)
{
if (a[i])
{
for (int j = ; j < k; j++)
{
num[i + j] = (num[i + j] + a[i] * b[j]) % mod;
}
}
}
for (int i = * k - ; i >= k; i--)
{
if (num[i])
{
for (int j = ; j < vec.size(); j++)
{
num[i - k + vec[j]] = (num[i - k + vec[j]] - num[i] * md[vec[j]]) % mod;
}
}
}
for (int i = ; i < k; i++) a[i] = num[i];
}
ll solve(ll n, vector<int> a, vector<int> b)
{
ll ans = , cnt = ;
int k = a.size();
assert(a.size() == b.size());
for (int i = ; i < k; i++) md[k - - i] = -a[i];
md[k] = ;
vec.clear();
for (int i = ; i < k; i++) if (md[i]) vec.push_back(i);
for (int i = ; i < k; i++) res[i] = base[i] = ;
res[] = ;
while ((1LL << cnt) <= n) cnt++;
for (int p = cnt; p >= ; p--)
{
mul(res, res, k);
if ((n >> p) & )
{
for (int i = k - ; i >= ; i--) res[i + ] = res[i];
res[] = ;
for (int j = ; j < vec.size(); j++)
{
res[vec[j]] = (res[vec[j]] - res[k] * md[vec[j]]) % mod;
}
}
}
for (int i = ; i < k; i++) ans = (ans + res[i] * b[i]) % mod;
if (ans < ) ans += mod;
return ans;
}
vector<int> BM(vector<int> s)
{
vector<int> B(, ), C(, );
int L = , m = , b = ;
for (int i = ; i < s.size(); i++)
{
ll d = ;
for (int j = ; j < L + ; j++) d = (d + (ll)C[j] * s[i - j]) % mod;
if (d == ) m++;
else if ( * L <= i)
{
vector<int> T = C;
ll c = mod - d * fast_mod(b, mod - , mod) % mod;
while (C.size() < B.size() + m) C.push_back();
for (int j = ; j < B.size(); j++) C[j + m] = (C[j + m] + c * B[j]) % mod;
L = i + - L, B = T, b = d, m = ;
}
else
{
ll c = mod - d * fast_mod(b, mod - , mod) % mod;
while (C.size() < B.size() + m) C.push_back();
for (int j = ; j < B.size(); j++) C[j + m] = (C[j + m] + c * B[j]) % mod;
m++;
}
}
return C;
}
int gao(vector<int> a, ll n)
{
vector<int> c = BM(a);
c.erase(c.begin());
for (int i = ; i < c.size(); i++) c[i] = (mod - c[i]) % mod;
return solve(n, c, vector<int>(a.begin(), a.begin() + c.size()));
}
} void RUN()
{
ll n;
int t;
scanf("%d", &t);
while(t--)
{
scanf("%lld", &n);
++n;
printf("%d\n", Dup4::gao(vector<int>{,,,,,,,,,}, n - ));
}
} int main()
{
#ifdef LOCAL_JUDGE
freopen("Text.txt", "r", stdin);
#endif // LOCAL_JUDGE RUN(); #ifdef LOCAL_JUDGE
fclose(stdin);
#endif // LOCAL_JUDGE return ;
}

ACM-ICPC 2018 焦作赛区网络预赛 Solution的更多相关文章

  1. ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)

    There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...

  2. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  3. ACM-ICPC 2018 焦作赛区网络预赛

    这场打得还是比较爽的,但是队友差一点就再过一题,还是难受啊. 每天都有新的难过 A. Magic Mirror Jessie has a magic mirror. Every morning she ...

  4. ACM-ICPC 2018 焦作赛区网络预赛J题 Participate in E-sports

    Jessie and Justin want to participate in e-sports. E-sports contain many games, but they don't know ...

  5. ACM-ICPC 2018 焦作赛区网络预赛 K题 Transport Ship

    There are NN different kinds of transport ships on the port. The i^{th}ith kind of ship can carry th ...

  6. ACM-ICPC 2018 焦作赛区网络预赛 L 题 Poor God Water

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  7. ACM-ICPC 2018 焦作赛区网络预赛 I题 Save the Room

    Bob is a sorcerer. He lives in a cuboid room which has a length of AA, a width of BB and a height of ...

  8. ACM-ICPC 2018 焦作赛区网络预赛 H题 String and Times(SAM)

    Now you have a string consists of uppercase letters, two integers AA and BB. We call a substring won ...

  9. ACM-ICPC 2018 焦作赛区网络预赛 G题 Give Candies

    There are NN children in kindergarten. Miss Li bought them NN candies. To make the process more inte ...

随机推荐

  1. 连接oracle服务器超慢--原因分析

    连接oracle服务器超慢:有如下原因可能会影响. 网络不好:oracle服务器跟本地网络不好. oracle服务器内存不足:导致反应超慢 监听日志listener.log太大:导致响应超慢. 所以对 ...

  2. sql 链接符 ||

  3. 查看网卡流量:nload

    nload命令用于查看网卡流量,用法如下: [root@localhost ~]$ yum install -y epel-release [root@localhost ~]$ yum instal ...

  4. pow()

    pow() 如果接收两个参数,如 pow(x, y),则结果相当于 x**y,也就是 x 的 y 次方pow() 如果接收三个参数,如 pow(x, y, z),则结果相当于 (x**y) % z,也 ...

  5. thinkphp5.0开发规范

    命名规范 ThinkPHP5遵循PSR-2命名规范和PSR-4自动加载规范,并且注意如下规范: 目录和文件 目录不强制规范,驼峰及小写+下划线模式均支持: 类库.函数文件统一以.php为后缀: 类的文 ...

  6. chrome中image图片预留位置的问题

    在项目中发现,当设置 <img src="" width="100" height="100"> 通过设置img的width属性 ...

  7. C# 生成PDF并下载。

    例子是生成一个pdf格式的证书: 需要引用itextsharp.dll //创建Document Document document = null; //为该Document创建一个Writer实例 ...

  8. ios 设置委托delegate

    为了进行页面传值,也可以用委托的方法. 下面以时间控件为例. 1.首先,在.h 文件设置委托 #import <UIKit/UIKit.h> @protocol DatePickerVie ...

  9. Service简介 demos

    extends:http://blog.csdn.net/ithomer/article/details/7364024 一. Service简介 Service是android 系统中的四大组件之一 ...

  10. BeginnerAdmin后台框架的使用!

    基于layui的后台框架,我比较喜欢使用BeginnerAdmin模板.但是在构建的时候可能会遇到一些问题. 问题一:侧栏出不来: 报错是这样的: 这个错误:说明的是 navbar.js没有引进来. ...