07Mendel's First Law
Problem
Probability is the mathematical study of randomly occurring phenomena. We will model such a phenomenon with a random variable, which is simply a variable that can take a number of different distinct outcomes depending on the result of an underlying random process.
For example, say that we have a bag containing 3 red balls and 2 blue balls. If we let XX represent the random variable corresponding to the color of a drawn ball, then the probability of each of the two outcomes is given by Pr(X=red)=35Pr(X=red)=35 and Pr(X=blue)=25Pr(X=blue)=25.
Random variables can be combined to yield new random variables. Returning to the ball example, let YY model the color of a second ball drawn from the bag (without replacing the first ball). The probability of YY being red depends on whether the first ball was red or blue. To represent all outcomes of XX and YY, we therefore use a probability tree diagram. This branching diagram represents all possible individual probabilities for XX and YY, with outcomes at the endpoints ("leaves") of the tree. The probability of any outcome is given by the product of probabilities along the path from the beginning of the tree; see Figure 2 for an illustrative example.
An event is simply a collection of outcomes. Because outcomes are distinct, the probability of an event can be written as the sum of the probabilities of its constituent outcomes. For our colored ball example, let AA be the event "YY is blue." Pr(A)Pr(A) is equal to the sum of the probabilities of two different outcomes: Pr(X=blue and Y=blue)+Pr(X=red and Y=blue)Pr(X=blue and Y=blue)+Pr(X=red and Y=blue), or 310+110=25310+110=25 (see Figure 2 above).
Given: Three positive integers kk, mm, and nn, representing a population containing k+m+nk+m+n organisms: kk individuals are homozygous dominant for a factor, mm are heterozygous, and nn are homozygous recessive.
Return: The probability that two randomly selected mating organisms will produce an individual possessing a dominant allele (and thus displaying the dominant phenotype). Assume that any two organisms can mate.
Sample Dataset
2 2 2
Sample Output
0.78333 计算公式:

方法一:
def f(x, y, z):
s = x + y + z # the sum of population
c = s * (s - 1) / 2.0 # comb(2,s)
p = 1 - (z * (z - 1) / 2 + 0.25 * y * (y - 1) / 2 + y * z * 0.5) / c
return p print f(2, 2, 2)
方法二:
# -*- coding: utf-8 -*-
### 7. Mendel's First Law ###
from scipy.misc import comb individuals = input('Number of individuals(k,m,n):')
[k, m, n] = map(int, individuals.split(','))
t = k + m + n rr = comb(n, 2) / comb(t, 2)
hh = comb(m, 2) / comb(t, 2)
hr = comb(n, 1) * comb(m, 1) / comb(t, 2) prob = 1 - (rr + hh * 1 / 4 + hr * 1 / 2) print (prob)
07Mendel's First Law的更多相关文章
- 齐夫定律, Zipf's law,Zipfian distribution
齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在 ...
- Conway's law(康威定律)
Mel Conway 康威在加利福尼亚理工学院获得物理学硕士学位,在凯斯西储大学获得数学博士学位.毕业之后,他参与了很多知名的软件项目,如 Pascal 编辑器.在他的职业生涯中,康威观察到一个现象 ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 3 The law of averages, and expected values
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 墨菲定律-Murphy's Law (转载)
墨菲定律 “墨菲定律”(Murphy's Law)亦称莫非定律.莫非定理.或摩菲定理,是西方世界常用的俚语. “墨菲定律”:事情往往会向你所想到的不好的方向发展,只要有这个可能性.比如你衣袋里有两把钥 ...
- BendFord's law's Chi square test
http://www.siam.org/students/siuro/vol1issue1/S01009.pdf bendford'law e=log10(1+l/n) o=freq of first ...
- 帕金森定律(Parkinson's Law)
帕金森定律(Parkinson's Law)是官僚主义或官僚主义现象的一种别称, 是由英国历史学家.政治学家西里尔·诺斯古德·帕金森(Cyril Northcote Parkinson)通过长期调查研 ...
- 默菲定律 [Murphy's Law]
一.关于默菲定律(Murphy's Law) “墨菲定律”.“帕金森定律”和“彼德原理”并称为二十世纪西方文化三大发现. “墨菲定律”的原话是这样说的:If there are two or mo ...
- 【分享】IT产业中的三大定理(一) —— 摩尔定理(Moore's Law)
科技行业流传着很多关于比尔·盖茨的故事,其中一个是他和通用汽车公司老板之间的对话.盖茨说,如果汽车工业能够像计算机领域一样发展,那么今天,买一辆汽车只需要 25 美元,一升汽油能跑四百公里.通用汽车老 ...
- 【分享】IT产业中的三大定理(二) —— 安迪&比尔定理 (Andy and Bill's Law)
摩尔定理给所有的计算机消费者带来一个希望,如果我今天嫌计算机太贵买不起,那么我等十八个月就可以用一半的价钱来买.要真是这样简单的话,计算机的销售量就上不去了.需要买计算机的人会多等几个月,已经有计算机 ...
随机推荐
- 【java基础】ThreadLocal的实现原理
[一]:ThreadLocal对象的大体实现原理===>当前线程对象有一个ThreadLocal.ThreadLocalMap属性.===>声明的ThreadLocal对象最终存储在当前线 ...
- test20181029 宝藏
题意 分析 考场做法 一眼看出是支持换根的树形dp. 用\(f(x,0/1)\)表示x及其子树中,从x出发,不一定/一定回到x的最大收益. 然后子树很好做. 换根的时候,我先计算后还原,需要考虑很多, ...
- CentOS7 tomcat systemctl脚本
1,centos7 使用 systemctl 替换了 service命令 参考:redhat文档: https://access.redhat.com/documentation/en-US/Red_ ...
- 洛谷2473(SCOI2008)奖励关
题目:https://www.luogu.org/problemnew/show/P2473 因为可不可选此物与之前选过什么物品有关,所以状态可以记录成前面已经选过什么物品. 因为选不选此物与它带来的 ...
- 7z 7zip 日期、时间,文件名
from: http://hi.baidu.com/guicomeon/item/c0957c373972fbc52f8ec26e 先说明一点,要注意区分当前所使用的系统,中文系统和英文系统是有区别的 ...
- Mysql中用between...and...查询日期时注意事项
select count(1) from user where regist_date between '2017-07-25 00:00:00' and '2017-07-25 24:00:00' ...
- 黄聪:如何配置Emeditor实现代码智能识别自动完成功能
设置方法如图所示: 效果如下图所示:
- call apply 使用
1.call 跟 apply的主要区别: call传入参数是一个一个传入,而 apply 使用的是数组传入 call(obj,arg1,arg2,arg3,arg4) apply(obj,[arg1, ...
- 「小程序JAVA实战」小程序的分享和下载功能(69)
转自:https://idig8.com/2018/09/25/xiaochengxujavashizhanxiaochengxudefenxianghexiazaigongneng68/ 在小程序上 ...
- Spring cloud config-client 爬坑
配置文件 找不到属性 Caused by: java.lang.IllegalArgumentException: Could not resolve placeholder 'from' in st ...