07Mendel's First Law
Problem

Probability is the mathematical study of randomly occurring phenomena. We will model such a phenomenon with a random variable, which is simply a variable that can take a number of different distinct outcomes depending on the result of an underlying random process.
For example, say that we have a bag containing 3 red balls and 2 blue balls. If we let XX represent the random variable corresponding to the color of a drawn ball, then the probability of each of the two outcomes is given by Pr(X=red)=35Pr(X=red)=35 and Pr(X=blue)=25Pr(X=blue)=25.
Random variables can be combined to yield new random variables. Returning to the ball example, let YY model the color of a second ball drawn from the bag (without replacing the first ball). The probability of YY being red depends on whether the first ball was red or blue. To represent all outcomes of XX and YY, we therefore use a probability tree diagram. This branching diagram represents all possible individual probabilities for XX and YY, with outcomes at the endpoints ("leaves") of the tree. The probability of any outcome is given by the product of probabilities along the path from the beginning of the tree; see Figure 2 for an illustrative example.
An event is simply a collection of outcomes. Because outcomes are distinct, the probability of an event can be written as the sum of the probabilities of its constituent outcomes. For our colored ball example, let AA be the event "YY is blue." Pr(A)Pr(A) is equal to the sum of the probabilities of two different outcomes: Pr(X=blue and Y=blue)+Pr(X=red and Y=blue)Pr(X=blue and Y=blue)+Pr(X=red and Y=blue), or 310+110=25310+110=25 (see Figure 2 above).
Given: Three positive integers kk, mm, and nn, representing a population containing k+m+nk+m+n organisms: kk individuals are homozygous dominant for a factor, mm are heterozygous, and nn are homozygous recessive.
Return: The probability that two randomly selected mating organisms will produce an individual possessing a dominant allele (and thus displaying the dominant phenotype). Assume that any two organisms can mate.
Sample Dataset
- 2 2 2
Sample Output
- 0.78333
- 计算公式:
- 方法一:
- def f(x, y, z):
- s = x + y + z # the sum of population
- c = s * (s - 1) / 2.0 # comb(2,s)
- p = 1 - (z * (z - 1) / 2 + 0.25 * y * (y - 1) / 2 + y * z * 0.5) / c
- return p
- print f(2, 2, 2)
方法二:
- # -*- coding: utf-8 -*-
- ### 7. Mendel's First Law ###
- from scipy.misc import comb
- individuals = input('Number of individuals(k,m,n):')
- [k, m, n] = map(int, individuals.split(','))
- t = k + m + n
- rr = comb(n, 2) / comb(t, 2)
- hh = comb(m, 2) / comb(t, 2)
- hr = comb(n, 1) * comb(m, 1) / comb(t, 2)
- prob = 1 - (rr + hh * 1 / 4 + hr * 1 / 2)
- print (prob)
07Mendel's First Law的更多相关文章
- 齐夫定律, Zipf's law,Zipfian distribution
齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在 ...
- Conway's law(康威定律)
Mel Conway 康威在加利福尼亚理工学院获得物理学硕士学位,在凯斯西储大学获得数学博士学位.毕业之后,他参与了很多知名的软件项目,如 Pascal 编辑器.在他的职业生涯中,康威观察到一个现象 ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 3 The law of averages, and expected values
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 墨菲定律-Murphy's Law (转载)
墨菲定律 “墨菲定律”(Murphy's Law)亦称莫非定律.莫非定理.或摩菲定理,是西方世界常用的俚语. “墨菲定律”:事情往往会向你所想到的不好的方向发展,只要有这个可能性.比如你衣袋里有两把钥 ...
- BendFord's law's Chi square test
http://www.siam.org/students/siuro/vol1issue1/S01009.pdf bendford'law e=log10(1+l/n) o=freq of first ...
- 帕金森定律(Parkinson's Law)
帕金森定律(Parkinson's Law)是官僚主义或官僚主义现象的一种别称, 是由英国历史学家.政治学家西里尔·诺斯古德·帕金森(Cyril Northcote Parkinson)通过长期调查研 ...
- 默菲定律 [Murphy's Law]
一.关于默菲定律(Murphy's Law) “墨菲定律”.“帕金森定律”和“彼德原理”并称为二十世纪西方文化三大发现. “墨菲定律”的原话是这样说的:If there are two or mo ...
- 【分享】IT产业中的三大定理(一) —— 摩尔定理(Moore's Law)
科技行业流传着很多关于比尔·盖茨的故事,其中一个是他和通用汽车公司老板之间的对话.盖茨说,如果汽车工业能够像计算机领域一样发展,那么今天,买一辆汽车只需要 25 美元,一升汽油能跑四百公里.通用汽车老 ...
- 【分享】IT产业中的三大定理(二) —— 安迪&比尔定理 (Andy and Bill's Law)
摩尔定理给所有的计算机消费者带来一个希望,如果我今天嫌计算机太贵买不起,那么我等十八个月就可以用一半的价钱来买.要真是这样简单的话,计算机的销售量就上不去了.需要买计算机的人会多等几个月,已经有计算机 ...
随机推荐
- windows dos权限管理
显示或者修改文件的访问控制列表(ACL) CACLS filename [/T] [/M] [/L] [/S[:SDDL]] [/E] [/C] [/G user:perm] ...
- win7 安装redis服务
Redis官方是不支持windows的,只是 Microsoft Open Tech group 在 GitHub上开发了一个Win64的版本,项目地址是: https://github.com/MS ...
- 将DHT11移植到Linux系统上(转)
由于项目需要,需要将DHT11移植到Linux.驱动程序如下 #include <linux/kernel.h> #include <linux/module.h> #incl ...
- linux shell 模拟post请求
Linux 下curl模拟Http 的get or post请求. 一.get请求 curl "http://www.baidu.com" 如果这里的URL指向的是一个文件或 ...
- 黑马程序员【JSP九大内置对象和四个作用域】转载
http://www.cnblogs.com/fanfu1/p/4530980.html JSP九大内置对象和四个作用域 ------- android培训.java培训.期待与您交流! ------ ...
- [原创]JEECMS 自定义标签调用广告版位下的所有广告(利用广告管理管理首页幻灯片)
JEECMS自带的只有[@cms_advertising]标签,并且官方没有给文档,用法: [@cms_advertising id='3'] <img src=&quo ...
- c# .net 编程方式修改环境变量无效的解决办法
无论是修改注册表方式(System\ControlSet001\Control\Session Manager\Environment"),还是用Environment.SetEnviron ...
- Android之NFC
来源:http://blog.csdn.net/bear_huangzhen/article/details/46333421 NFC简介: Near Field Communication 近场通信 ...
- 设置pip镜像源
修改镜像源 vim ~/.pip/pip.conf windows 当前用户目录\pip\pip.ini 内容 [global] index-url=https://pypi.tuna.tsinghu ...
- 短信发送接口demo
public class SendValidCode { // 短信发送的接口网关 private static String sendUrl = "******************** ...