AVL树的平衡算法(JAVA实现)
private void balance(Node node){
Node parent = node.getParent();
Node node_middle = node;
Node node_prev = node; Boolean avl = true;
do{
if(node_middle == parent.getLeft() && (-1 <= parent.getAVL()-1 && parent.getAVL()-1 <= 1)){
//node_middle为parent的左树,此时parent左树高度+1不会造成不平衡。
parent.subAVL();
node_prev = node_middle;
node_middle = parent;
//由于上面对parent的平衡值进行了修改,如果修改后的平衡值为0,说明此时parent节点的高度没有改变,之前较短的左树高度+1,变为与右树高度相同。
if(parent != null && parent.getAVL() == 0)
parent = null;
else
parent = parent.getParent();
}else if(node_middle == parent.getRight() && (-1 <= parent.getAVL()+1 && parent.getAVL()+1 <= 1)){
//node_middle为parent的右树,此时parent右树高度+1不会造成不平衡。
parent.addAVL();
node_prev = node_middle;
node_middle = parent;
//由于上面对parent的平衡值进行了修改,如果修改后的平衡值为0,说明此时parent节点的高度没有改变,之前较短的右树高度+1,变为与左树高度相同。
if(parent != null && parent.getAVL() == 0)
parent = null;
else
parent = parent.getParent();
}else{//出现最小不平衡节点,新增时不需要考虑更高节点,所以直接中断循环,调用平衡方法
avl = false;
}
}while(parent != null && avl); if(parent == null){
return;
}
//选择相应的旋转方式
chooseCalculation(parent, node_middle, node_prev);
}
3.2、删除
public void deleteNode(int item){ Node node = get(item);
if(node == null)
return;
Node parent = node.getParent();
if(!node.hasChild()){//叶子节点
if(parent == null){//删除最后节点
root = null;
return;
}
if(node.hasBrother()){//node有兄弟节点时,需要判断是否需要调用平衡方法
if(node == parent.getLeft())
isBalance(node, 1);
else
isBalance(node, -1);
parent.deleteChildNode(node);
}else{//node没有兄弟节点时,高度减一,需要进行平衡
deleteAvl(node);
parent.deleteChildNode(node);
}
}else if(node.getLeft() != null && node.getRight() == null){//有一个子节点时,将子节点上移一位,然后进行平衡即可
if(parent == null){//删除的是根节点
root = node;
return;
}
if(node == parent.getLeft()){
parent.setLeft(node.getLeft());
}else{
parent.setRight(node.getLeft());
}
node.getLeft().setParent(parent);
deleteAvl(node.getLeft());
}else if(node.getLeft() == null && node.getRight() != null){//有一个子节点时,将子节点上移一位,然后进行平衡即可
if(parent == null){//删除的是根节点
root = node;
return;
}
if(node == parent.getRight()){
parent.setRight(node.getRight());
}else{
parent.setLeft(node.getRight());
}
node.getRight().setParent(parent);
deleteAvl(node.getRight());
}
else{//有两个子节点时,先在节点左树寻找最大节点last,然后删除last,最后将被删除节点的value替换为last的value
Node last = findLastNode(node);
int tmp = last.getValue();
deleteNode(last.getValue());
node.setValue(tmp);
}
node = null;//GC
}
private void LeftLeftRotate(Node node){ Node parent = node.getParent(); if(parent.getParent() != null && parent == parent.getParent().getLeft()){
node.setParent(parent.getParent());
parent.getParent().setLeft(node);
}else if(parent.getParent() != null && parent == parent.getParent().getRight()){
node.setParent(parent.getParent());
parent.getParent().setRight(node);
}else{
root = node;
node.setParent(null);
}
parent.setParent(node);
parent.setLeft(node.getRight());
if(node.getRight() != null)
node.getRight().setParent(parent);
node.setRight(parent); if(node.getAVL() == -1){//只有左节点时,parent转换后没有子节点
parent.setAVL(0);
node.setAVL(0);
}else if(node.getAVL() == 0){//node有两个子节点,转换后parent有一个左节点
parent.setAVL(-1);
node.setAVL(1);
}//node.getAVL()为1时会调用左右旋转
}
private void RightRightRotate(Node node){ Node parent = node.getParent(); if(parent.getParent() != null && parent == parent.getParent().getLeft()){
node.setParent(parent.getParent());
parent.getParent().setLeft(node);
}else if(parent.getParent() != null && parent == parent.getParent().getRight()){
node.setParent(parent.getParent());
parent.getParent().setRight(node);
}else{
root = node;
node.setParent(null);
}
parent.setParent(node);
parent.setRight(node.getLeft());
if(node.getLeft() != null)
node.getLeft().setParent(parent);
node.setLeft(parent); if(node.getAVL() == 1){
node.setAVL(0);
parent.setAVL(0);
}else if(node.getAVL() == 0){//当node有两个节点时,转换后层数不会更改,左树比右树高1层,parent的右树比左树高一层
parent.setAVL(1);
node.setAVL(-1);
}
}
private void LeftRightRotate(Node node){ Node parent = node.getParent();
Node child = node.getRight(); //左右旋转时node的avl必为1,所以只需考虑child的avl
if(!child.hasChild()){
node.setAVL(0);
parent.setAVL(0);
}else if(child.getAVL() == -1){
node.setAVL(0);
parent.setAVL(1);
}else if(child.getAVL() == 1){
node.setAVL(-1);
parent.setAVL(0);
}else if(child.getAVL() == 0){
node.setAVL(0);
parent.setAVL(0);
}
child.setAVL(0); //第一次交换
parent.setLeft(child);
node.setParent(child);
node.setRight(child.getLeft());
if(child.getLeft() != null)
child.getLeft().setParent(node);
child.setLeft(node);
child.setParent(parent); //第二次交换
if(parent.getParent() != null && parent == parent.getParent().getLeft()){
child.setParent(parent.getParent());
parent.getParent().setLeft(child);
}else if(parent.getParent() != null && parent == parent.getParent().getRight()){
child.setParent(parent.getParent());
parent.getParent().setRight(child);
}else{
root = child;
child.setParent(null);
}
parent.setParent(child);
parent.setLeft(child.getRight());
if(child.getRight() != null)
child.getRight().setParent(parent);
child.setRight(parent);
}
3.3.4、右左旋转
private void RightLeftRotate(Node node){ Node parent = node.getParent();
Node child = node.getLeft(); if(!child.hasChild()){
node.setAVL(0);
parent.setAVL(0);
}else if(child.getAVL() == -1){
node.setAVL(1);
parent.setAVL(0);
}else if(child.getAVL() == 1){
node.setAVL(0);
parent.setAVL(-1);
}else if(child.getAVL() == 0){
parent.setAVL(0);
node.setAVL(0);
}
child.setAVL(0); //第一次交换
parent.setRight(child);
node.setParent(child);
node.setLeft(child.getRight());
if(child.getRight() != null)
child.getRight().setParent(node);
child.setRight(node);
child.setParent(parent); //第二次交换
if(parent.getParent() != null && parent == parent.getParent().getLeft()){
child.setParent(parent.getParent());
parent.getParent().setLeft(child);
}else if(parent.getParent() != null && parent == parent.getParent().getRight()){
child.setParent(parent.getParent());
parent.getParent().setRight(child);
}else{
root = child;
child.setParent(null);
}
parent.setParent(child);
parent.setRight(child.getLeft());
if(child.getLeft() != null)
child.getLeft().setParent(parent);
child.setLeft(parent);
}
完整代码github地址:https://github.com/ziyuanjg/AVLTree
AVL树的平衡算法(JAVA实现)的更多相关文章
- AVL树的JAVA实现及AVL树的旋转算法
1,AVL树又称平衡二叉树,它首先是一颗二叉查找树,但在二叉查找树中,某个结点的左右子树高度之差的绝对值可能会超过1,称之为不平衡.而在平衡二叉树中,任何结点的左右子树高度之差的绝对值会小于等于 1. ...
- AVL树(平衡二叉查找树)
首先要说AVL树,我们就必须先说二叉查找树,先介绍二叉查找树的一些特性,然后我们再来说平衡树的一些特性,结合这些特性,然后来介绍AVL树. 一.二叉查找树 1.二叉树查找树的相关特征定义 二叉树查找树 ...
- 判断AVL树是否平衡
AVL树是高度的平衡二插搜索树,其左子树和右子树的高度之差不超过1(树中的左子树和右子树都是AVL树),维持这个高度之差就要控制它的平衡因子.那么判断一颗AVL树是否平衡就需要判断它的左子树和右子树高 ...
- AVL树 高度平衡的二叉查找树
1.What is AVL tree? AVL tree 是一种特殊的二叉查找树,,首先我们要在树中引入平衡因子balance,表示结点右子树的高度减去左子树的高度差(右-左),对于一棵AVL树要么它 ...
- AVL树 & 重平衡概念
AVL树是有平衡条件的二叉搜索树.这个平衡条件必须容易保持,而且需要保证树的深度是O(logN). AVL=BBST 作为二叉搜索树的最后一部分,我们来介绍最为经典的一种平衡二叉搜索树:AVL树.回顾 ...
- 二叉树之AVL树的平衡实现(递归与非递归)
这篇文章用来复习AVL的平衡操作,分别会介绍其旋转操作的递归与非递归实现,但是最终带有插入示例的版本会以递归呈现. 下面这张图绘制了需要旋转操作的8种情况.(我要给做这张图的兄弟一个赞)后面会给出这八 ...
- leecode 树的平衡判定 java
以前写过c++版本的,感觉java写的好舒心啊/** * Definition for binary tree * public class TreeNode { * int val; * TreeN ...
- Java数据结构和算法(七)--AVL树
在上篇博客中,学习了二分搜索树:Java数据结构和算法(六)--二叉树,但是二分搜索树本身存在一个问题: 如果现在插入的数据为1,2,3,4,5,6,这样有序的数据,或者是逆序 这种情况下的二分搜索树 ...
- AVL树(三)之 Java的实现
概要 前面分别介绍了AVL树"C语言版本"和"C++版本",本章介绍AVL树的Java实现版本,它的算法与C语言和C++版本一样.内容包括:1. AVL树的介绍 ...
随机推荐
- Web API系列(二)接口安全和参数校验
以前简单介绍过web api 的设计,但是还是有很多朋友问我,如何合理的设计和实现web api.比如,接口安全,异常处理,统一数据返回等问题.所以有必要系统的总结总结 web api 的设计和实现. ...
- Django基础,Day5 - form表单投票详解
投票URL polls/urls.py: # ex: /polls/5/vote/ url(r'^(?P<question_id>[0-9]+)/vote/$', views.vote, ...
- JQuery常用函数及功能小结
1.文档加载完成执行函数$(document).ready(function(){ alert("开始了");});2.添加/删除CSS类$("#some-id&quo ...
- C语言创建及解析Json的使用法则
参考原文:http://blog.csdn.net/xukai871105/article/details/33013455 JSON(JavaScriptObject Notation)是一种轻量级 ...
- [译]IIS 8.0应用初始化
原文 代码 或者点这 通过IIS 8.0应用初始化特性管理员可以配置IIS为一个网站或多个网站提前执行初始化任务.当应用在初始化期间,可以通过配置先返回一个静态页面知道应用的初始化任务完成. 通过配置 ...
- poj Flip Game 1753 (枚举)
Flip Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 27005 Accepted: 11694 Descr ...
- MAC OS升级到10.11(OS X EICAPTION)之后CocoaPods不能正常使用的问题解决
昨晚回家之后开始升级系统到10.11,下载了一整个晚上之后终于在早上下载完毕,早上带到公司,想查一个第三方库的时候却遇到了问题: guoyufudeMacBook-Pro:~ GuoYufu$ pod ...
- 如何安装 第三方 Go 离线包? (GOPATH、 go install)
有时候 go get 比较慢,可以考虑用迅雷等下载工具下载下来,然后再本地安装, 如:code.google.com/p/go.net/websocket,如何安装这些离线包? 先在你的 GOPATH ...
- iOS9新特性 window决定程序的状态栏管理问题
Xcode7升级之后遇到的问题 问题一: 老项目在Xcode6上运行没有任何问题,但在Xcode7上运行直接崩了! 经过一波分析: 发现是因为我顶部状态栏处添加了topWindow,用于处理Tab ...
- 浅谈CPU和GPU的区别
导读: CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景.CPU需要很强的通用性来处理各种不同的数据类型,而GPU面对的则是类型高度统一的.相互无依赖的大规模数据 ...