题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=5016

https://loj.ac/problem/2254

题解

原式是这样的

\[\sum_{x = 0}^{\infty} get(l_1, r_1, x) \cdot get(l_2, r_2, x)
\]

因为一次询问需要用到两个区间,本来按理说最擅长两个区间的查询的主席树,这里也没有办法建立。

然后分块或者莫队的话也无能为力。

于是我们考虑对询问本身做一些修改,使得一次询问只涉及两个参数。


\[\sum_{x = 0}^{\infty} get(l_1, r_1, x) \cdot get(l_2, r_2, x)\\= \sum_{x=0}^{\infty} get(1, r_1, x) \cdot get(1, r_2, x) - get(1, l1 - 1, x) \cdot get(1, r2, x) - get(1, l2 - 1, x) \cdot get(1, r1, x) + get(1, l1 - 1, x) \cdot get(1, l2 - 1, x)
\]

这样,我们令 \(g(a, b)\) 表示 \(\sum\limits_{x = 0}^{\infty} get(1, a, x) \cdot get(1, b, x)\),那么我们就把上面的一个询问分解成了 \(4\) 个询问。

然后 \(g(a, b)\) 可以对 \(a, b\) 进行莫队完成。


时间复杂度 \(O(n\sqrt{4m})\)。这样写复杂度似乎不是很标准,因为复杂度里面不应该有任何常数。

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 50000 + 7; #define bl(x) (((x) - 1) / blo + 1) int n, m, blo, Q;
ll val;
int a[N], cl[N], cr[N];
ll ans[N]; struct Query {
int opt, l, r;
ll *ans;
inline Query() {}
inline Query(const int &opt, const int &l, const int &r, ll *ans) : opt(opt), l(l), r(r), ans(ans) {
if (l > r) std::swap(this->l, this->r);
}
inline bool operator < (const Query &b) const { return bl(l) != bl(b.l) ? l < b.l : r < b.r; }
} q[N << 2]; inline void addl(int x) {
val += cr[a[x]];
++cl[a[x]];
}
inline void addr(int x) {
val += cl[a[x]];
++cr[a[x]];
}
inline void dell(int x) {
val -= cr[a[x]];
--cl[a[x]];
}
inline void delr(int x) {
val -= cl[a[x]];
--cr[a[x]];
} inline void work() {
blo = sqrt(Q);
std::sort(q + 1, q + Q + 1);
int l = 0, r = 0;
for (int i = 1; i <= Q; ++i) {
while (r < q[i].r) addr(++r);
while (l < q[i].l) addl(++l);
while (l > q[i].l) dell(l--);
while (r > q[i].r) delr(r--);
*q[i].ans += q[i].opt * val;
}
for (int i = 1; i <= m; ++i) printf("%lld\n", ans[i]);
} inline void init() {
read(n);
for (int i = 1; i <= n; ++i) read(a[i]);
read(m);
for (int i = 1; i <= m; ++i) {
int l1, r1, l2, r2;
read(l1), read(r1), read(l2), read(r2);
q[++Q] = Query(1, r1, r2, ans + i);
if (l2 > 1) q[++Q] = Query(-1, l2 - 1, r1, ans + i);
if (l1 > 1) q[++Q] = Query(-1, l1 - 1, r2, ans + i);
if (l1 > 1 && l2 > 1) q[++Q] = Query(1, l1 - 1, l2 - 1, ans + i);
}
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

bzoj5016 & loj2254 [Snoi2017]一个简单的询问 莫队的更多相关文章

  1. 【BZOJ5016】[Snoi2017]一个简单的询问 莫队

    [BZOJ5016][Snoi2017]一个简单的询问 Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计 ...

  2. 【bzoj5016】[Snoi2017]一个简单的询问 莫队算法

    题目描述 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. 输入 第一行,一个数字N,表 ...

  3. Gym101138D Strange Queries/BZOJ5016 SNOI2017 一个简单的询问 莫队、前缀和、容斥

    传送门--Gym 传送门--BZOJ THUWC2019D1T1撞题可还行 以前有些人做过还问过我,但是我没有珍惜,直到进入考场才追悔莫及-- 设\(que_{i,j}\)表示询问\((1,i,1,j ...

  4. BZOJ5016:[SNOI2017]一个简单的询问(莫队)

    Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input 第 ...

  5. [SNOI2017]一个简单的询问

    [SNOI2017]一个简单的询问 题目大意: 给定一个长度为\(n(n\le50000)\)的序列\(A(1\le A_i\le n)\),定义\(\operatorname{get}(l,r,x) ...

  6. BZOJ5016 Snoi2017一个简单的询问(莫队)

    容易想到区间转化成前缀和.这样每个询问有了二维坐标,莫队即可. #include<iostream> #include<cstdio> #include<cmath> ...

  7. [bzoj5016][Snoi2017]一个简单的询问

    来自FallDream的博客,未经允许,请勿转载,谢谢. 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出   get(l,r,x)表示计算区间[l,r]中 ...

  8. [SNOI2017]一个简单的询问【莫队+容斥原理】

    题目大意 给你一个数列,让你求两个区间内各个数出现次数的乘积的和. 分析 数据范围告诉我们可以用莫队过. 我并不知道什么曼哈顿什么乱七八糟的东西,但是我们可以用容斥原理将这个式子展开来. \[\sum ...

  9. 【LOJ2254】SNOI2017一个简单的询问

    莫队,每次询问的是两个区间,就把区间拆开,分开来算就好了. 借鉴了rank1大佬的玄学排询问的姿势. #include<bits/stdc++.h> #define N 50010 typ ...

随机推荐

  1. 《SQL Server 2012 T-SQL基础》读书笔记 - 10.可编程对象

    Chapter 10 Programmable Objects 声明和赋值一个变量: DECLARE @i AS INT; SET @i = 10; 变量可以让你暂时存一个值进去,然后之后再用,作用域 ...

  2. React-Native 之 GD (十二)海淘半小时热门 及 获取最新数据个数功能 (角标)

    1.海淘半小时热门   基本功能和首页相似 GDHt.js /** * 海淘折扣 */ import React, { Component } from 'react'; import { Style ...

  3. ThinkPHP框架实现rewrite路由配置

    rewrite路由形式:   //网址/分组/控制器/方法 配置实现rewrite路由的配置: 1. 修改apache的配置 先修改httpd.conf配置文件中的AllowOverrideAll,全 ...

  4. Tarjan算法整理

    众所周知,tarjan是个非常nb的人,他发明了很多nb的算法,tarjan算法就是其中一个,它常用于求解强连通分量,割点和桥等.虽然具体实现的细节不太一样,但是大体思路是差不多的.先来说一下大体思路 ...

  5. rime 同文输入法 安卓系统

    下载安装APP 从google play下载同文输入法 默认安装完只有3个输入法, 没有五笔和拼音 [官网][https://rime.im/download/] 获取五笔拼音方案 然后找到 /sdc ...

  6. 查看在linux中下载的图片

    1.安装   yum install lrzsz -y 2.找到文件所在的位置选中之后 3.点击那个蓝色的框框里面有一个 用ZMODEM下载 4.选择要保存的位置就可以查看了

  7. SpringBoot 集成mongodb(1)单数据源配置

    新项目要用到mongodb,于是在个人电脑上的虚拟环境linux上安装了下mongodb,练习熟悉下. 1.虚拟机上启动mongodb. 首先查看虚拟机ip地址,忘了哈~~ 命令行>ifconf ...

  8. VUe.js 父组件向子组件中传值及方法

    父组件向子组件中传值 1.  Vue实例可以看做是大的组件,那么在其内部定义的私有组件与这个实例之间就出现了父子组件的对应关系. 2. 父子组件在默认的情况下,子组件是无妨访问到父组件中的数据的,所以 ...

  9. Java课堂笔记(二):面向对象

    几乎每一本介绍Java语言的书中都会提到“面向对象”的这个概念,然而博主初学Java时看到这方面的内容一般都是草草地看一看,甚至是直接略过.原因很简单:考试基本不考,而且初学阶段写代码也很少用上.但事 ...

  10. 001/Docker入门(Mooc)

    docker官网:https://www.docker.com/ 1.什么是docker 2.Docker思想     ==> [1].集装箱:保证程序完整(不缺东西,如配置文件等). [2]. ...