bzoj5016 & loj2254 [Snoi2017]一个简单的询问 莫队
题目传送门
https://lydsy.com/JudgeOnline/problem.php?id=5016
题解
原式是这样的
\]
因为一次询问需要用到两个区间,本来按理说最擅长两个区间的查询的主席树,这里也没有办法建立。
然后分块或者莫队的话也无能为力。
于是我们考虑对询问本身做一些修改,使得一次询问只涉及两个参数。
\]
这样,我们令 \(g(a, b)\) 表示 \(\sum\limits_{x = 0}^{\infty} get(1, a, x) \cdot get(1, b, x)\),那么我们就把上面的一个询问分解成了 \(4\) 个询问。
然后 \(g(a, b)\) 可以对 \(a, b\) 进行莫队完成。
时间复杂度 \(O(n\sqrt{4m})\)。这样写复杂度似乎不是很标准,因为复杂度里面不应该有任何常数。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 50000 + 7;
#define bl(x) (((x) - 1) / blo + 1)
int n, m, blo, Q;
ll val;
int a[N], cl[N], cr[N];
ll ans[N];
struct Query {
int opt, l, r;
ll *ans;
inline Query() {}
inline Query(const int &opt, const int &l, const int &r, ll *ans) : opt(opt), l(l), r(r), ans(ans) {
if (l > r) std::swap(this->l, this->r);
}
inline bool operator < (const Query &b) const { return bl(l) != bl(b.l) ? l < b.l : r < b.r; }
} q[N << 2];
inline void addl(int x) {
val += cr[a[x]];
++cl[a[x]];
}
inline void addr(int x) {
val += cl[a[x]];
++cr[a[x]];
}
inline void dell(int x) {
val -= cr[a[x]];
--cl[a[x]];
}
inline void delr(int x) {
val -= cl[a[x]];
--cr[a[x]];
}
inline void work() {
blo = sqrt(Q);
std::sort(q + 1, q + Q + 1);
int l = 0, r = 0;
for (int i = 1; i <= Q; ++i) {
while (r < q[i].r) addr(++r);
while (l < q[i].l) addl(++l);
while (l > q[i].l) dell(l--);
while (r > q[i].r) delr(r--);
*q[i].ans += q[i].opt * val;
}
for (int i = 1; i <= m; ++i) printf("%lld\n", ans[i]);
}
inline void init() {
read(n);
for (int i = 1; i <= n; ++i) read(a[i]);
read(m);
for (int i = 1; i <= m; ++i) {
int l1, r1, l2, r2;
read(l1), read(r1), read(l2), read(r2);
q[++Q] = Query(1, r1, r2, ans + i);
if (l2 > 1) q[++Q] = Query(-1, l2 - 1, r1, ans + i);
if (l1 > 1) q[++Q] = Query(-1, l1 - 1, r2, ans + i);
if (l1 > 1 && l2 > 1) q[++Q] = Query(1, l1 - 1, l2 - 1, ans + i);
}
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
bzoj5016 & loj2254 [Snoi2017]一个简单的询问 莫队的更多相关文章
- 【BZOJ5016】[Snoi2017]一个简单的询问 莫队
[BZOJ5016][Snoi2017]一个简单的询问 Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计 ...
- 【bzoj5016】[Snoi2017]一个简单的询问 莫队算法
题目描述 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. 输入 第一行,一个数字N,表 ...
- Gym101138D Strange Queries/BZOJ5016 SNOI2017 一个简单的询问 莫队、前缀和、容斥
传送门--Gym 传送门--BZOJ THUWC2019D1T1撞题可还行 以前有些人做过还问过我,但是我没有珍惜,直到进入考场才追悔莫及-- 设\(que_{i,j}\)表示询问\((1,i,1,j ...
- BZOJ5016:[SNOI2017]一个简单的询问(莫队)
Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input 第 ...
- [SNOI2017]一个简单的询问
[SNOI2017]一个简单的询问 题目大意: 给定一个长度为\(n(n\le50000)\)的序列\(A(1\le A_i\le n)\),定义\(\operatorname{get}(l,r,x) ...
- BZOJ5016 Snoi2017一个简单的询问(莫队)
容易想到区间转化成前缀和.这样每个询问有了二维坐标,莫队即可. #include<iostream> #include<cstdio> #include<cmath> ...
- [bzoj5016][Snoi2017]一个简单的询问
来自FallDream的博客,未经允许,请勿转载,谢谢. 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中 ...
- [SNOI2017]一个简单的询问【莫队+容斥原理】
题目大意 给你一个数列,让你求两个区间内各个数出现次数的乘积的和. 分析 数据范围告诉我们可以用莫队过. 我并不知道什么曼哈顿什么乱七八糟的东西,但是我们可以用容斥原理将这个式子展开来. \[\sum ...
- 【LOJ2254】SNOI2017一个简单的询问
莫队,每次询问的是两个区间,就把区间拆开,分开来算就好了. 借鉴了rank1大佬的玄学排询问的姿势. #include<bits/stdc++.h> #define N 50010 typ ...
随机推荐
- docker 在centos上的安装实践
使用yum安装docker yum -y install docker-io [root@localhost goblin]# yum -y install docker-io Loaded plug ...
- 深入探究JVM(2) - 探秘Metaspace
Java 8彻底将永久代移除出了HotSpot JVM,将其原有的数据迁移至Java Heap或Metaspace.这一篇文章我们来总结一下Metaspace(元空间)的特性.如有错误,敬请指出,谢谢 ...
- Microsoft windows terminal
https://github.com/microsoft/terminal 尝试在windows store中安装,结果everything搜索不到 I tried running WindowsTe ...
- hypermesh中怎么设置支反力(反作用力)
Analysis page >> Control cards >> Global output request 勾选 SPCF 和 GPFORCE .
- 用Vue来实现音乐播放器(九):歌单数据接口分析
z这里如果我们和之前获取轮播图的数据一样来获取表单的数据 发现根本获取不到 原因是qq音乐在请求头里面加了authority和refer等 但是如果我们通过jsonp实现跨域来请求数据的话 是根本 ...
- MongoDB学习【一】—MongoDB简介和安装
一.MongoDB简介 1.MongoDB是什么 MongoDB是一款强大.灵活.且易于扩展的通用型数据库,MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统. 在高负载的 ...
- Linux基础—saltstack运维工具学习
一.saltstack简介 1.saltstack是什么 系统管理员日常会进行大量的重复性操作,例如安装软件,修改配置文件,创建用户,批量执行命令等,如果主机数量庞大,单靠人工维护实在让人难以忍受. ...
- 发邮件--yagmail模块
准备工作:1.在你的邮箱设置里面打开smtp服务(若有的话)2.开启邮箱授权码,记住这个授权码(连接邮箱服务时用) 1.安装yagmail模块pip install yagmail2.举例:impor ...
- lua 转换16进制字符串为10进制数值
lua 转换16进制字符串为10进制数值 > print(tonumber()) 利用tonumber函数,“16”表示“03FFACB”为16进制数.
- 关于存储过程的一些sql
1.关于事务的回滚Set XACT_ABORT ON; 开启为on时 ,如果事务语句产生运行错误 ,将整个事务终止进行回滚,Off时只回滚产生错误的语句. 2.获取事务语句中上一次插入值的行号@@ID ...