链接:

https://vjudge.net/problem/SPOJ-GSS1

题意:

You are given a sequence A[1], A[2], ..., A[N] . ( |A[i]| ≤ 15007 , 1 ≤ N ≤ 50000 ). A query is defined as follows:

Query(x,y) = Max { a[i]+a[i+1]+...+a[j] ; x ≤ i ≤ j ≤ y }.

Given M queries, your program must output the results of these queries.

区间最大子段和

思路:

线段树维护,区间总和, 区间中间最大和, 区间以左端点为起点的最大和, 区间以有端的结束的最大和.

向上的维护代码

void PushUp(int root)
{
Seg[root].sum = Seg[root<<1].sum+Seg[root<<1|1].sum;
//区间和
Seg[root].midmax = max(Seg[root<<1].rmax+Seg[root<<1|1].lmax, max(Seg[root<<1].midmax, Seg[root<<1|1].midmax));
//区间中间和,左节点中间和,右节点中间和,左节点右边和加右节点左边和,三个取最大
Seg[root].lmax = max(Seg[root<<1].sum+Seg[root<<1|1].lmax, Seg[root<<1].lmax);
//区间左边和, 左节点左边和,左节点区间和加右节点左边和,两个取最大
Seg[root].rmax = max(Seg[root<<1|1].sum+Seg[root<<1].rmax, Seg[root<<1|1].rmax);
//区间右边的, 右节点右边和,右节点区间和加左节点右边和,两个最大
}

查询学到了新操作,返回结构体,挺好用的

代码:

/*
*线段树维护区间最大子段和
* 模板
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long LL; const int MAXN = 5e4+10;
const int INF = 1e9+10;
const int NINF = -1e9; struct SegmentTree
{
LL sum;//区间全部和
LL midmax;//区间中间值最大和
LL lmax;//以左端点为起点的最大和
LL rmax;//以右端点为终点的最大和
}Seg[MAXN*4];
LL a[MAXN];
int n, q; void PushUp(int root)
{
Seg[root].sum = Seg[root<<1].sum+Seg[root<<1|1].sum;
//区间和
Seg[root].midmax = max(Seg[root<<1].rmax+Seg[root<<1|1].lmax, max(Seg[root<<1].midmax, Seg[root<<1|1].midmax));
//区间中间和,左节点中间和,右节点中间和,左节点右边和加右节点左边和,三个取最大
Seg[root].lmax = max(Seg[root<<1].sum+Seg[root<<1|1].lmax, Seg[root<<1].lmax);
//区间左边和, 左节点左边和,左节点区间和加右节点左边和,两个取最大
Seg[root].rmax = max(Seg[root<<1|1].sum+Seg[root<<1].rmax, Seg[root<<1|1].rmax);
//区间右边的, 右节点右边和,右节点区间和加左节点右边和,两个最大
} void Build(int root, int l, int r)
{
if (l == r)
{
Seg[root].sum = Seg[root].midmax = Seg[root].lmax = Seg[root].rmax = a[l];
return;
}
int mid = (l+r)/2;
Build(root<<1, l, mid);
Build(root<<1|1, mid+1, r);
PushUp(root);
} SegmentTree Query(int root, int l, int r, int ql, int qr)
{
SegmentTree lt = {NINF, NINF, NINF, NINF}, rt = {NINF, NINF, NINF, NINF}, re = {NINF, NINF, NINF, NINF};
if (ql <= l && r <= qr)
return Seg[root];
int mid = (l+r)/2;
if (ql <= mid)
lt = Query(root<<1, l, mid, ql, qr);
if (qr > mid)
rt = Query(root<<1|1, mid+1, r, ql, qr);
re.sum = lt.sum+rt.sum;
re.midmax = max(lt.rmax+rt.lmax, max(lt.midmax, rt.midmax));
re.lmax = max(lt.sum+rt.lmax, lt.lmax);
re.rmax = max(rt.sum+lt.rmax, rt.rmax);
return re;
} int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n;
for (int i = 1;i <= n;i++)
cin >> a[i];
Build(1, 1, n);
cin >> q;
int l, r;
while (q--)
{
cin >> l >> r;
SegmentTree res = Query(1, 1, n, l, r);
cout << max(res.midmax, max(res.lmax, res.rmax)) << endl;
} return 0;
}

SPOJ-GSS1-Can you answer these queries 1的更多相关文章

  1. [题解] SPOJ GSS1 - Can you answer these queries I

    [题解] SPOJ GSS1 - Can you answer these queries I · 题目大意 要求维护一段长度为 \(n\) 的静态序列的区间最大子段和. 有 \(m\) 次询问,每次 ...

  2. SPOJ GSS1 - Can you answer these queries I(线段树维护GSS)

    Can you answer these queries I SPOJ - GSS1 You are given a sequence A[1], A[2], -, A[N] . ( |A[i]| ≤ ...

  3. SPOJ GSS1 Can you answer these queries I[线段树]

    Description You are given a sequence A[1], A[2], ..., A[N] . ( |A[i]| ≤ 15007 , 1 ≤ N ≤ 50000 ). A q ...

  4. SPOJ GSS1 Can you answer these queries I

    Time Limit: 115MS   Memory Limit: 1572864KB   64bit IO Format: %lld & %llu Description You are g ...

  5. SPOJ GSS1 Can you answer these queries I ——线段树

    [题目分析] 线段树裸题. 注意update的操作,写结构体里好方便. 嗯,没了. [代码] #include <cstdio> #include <cstring> #inc ...

  6. SPOJ GSS3 Can you answer these queries III[线段树]

    SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...

  7. GSS7 spoj 6779. Can you answer these queries VII 树链剖分+线段树

    GSS7Can you answer these queries VII 给出一棵树,树的节点有权值,有两种操作: 1.询问节点x,y的路径上最大子段和,可以为空 2.把节点x,y的路径上所有节点的权 ...

  8. 线段树 SP1043 GSS1 - Can you answer these queries I

    SP1043 GSS1 - Can you answer these queries I 题目描述 给出了序列A[1],A[2],-,A[N]. (a[i]≤15007,1≤N≤50000).查询定义 ...

  9. GSS3 SPOJ 1716. Can you answer these queries III gss1的变形

    gss2调了一下午,至今还在wa... 我的做法是:对于询问按右区间排序,利用splay记录最右的位置.对于重复出现的,在splay中删掉之前出现的位置所在的节点,然后在splay中插入新的节点.对于 ...

  10. GSS1 spoj 1043 Can you answer these queries I 最大子段和

    今天下午不知道要做什么,那就把gss系列的线段树刷一下吧. Can you answer these queries I 题目:给出一个数列,询问区间[l,r]的最大子段和 分析: 线段树简单区间操作 ...

随机推荐

  1. Win7上防火墙开放FTP服务以及ping解决方案

    1.windows 防火墙开放ftp服务 The following 4 steps will allow both non-secure and SSL FTP traffic through fi ...

  2. 性能测试工具之Apache ab

    一.apache ab简介 ab全称ApacheBench,是著名的Web服务器软件apache附带的一款非常简单的压力测试工具,它可以同时模拟多个并发请求,测试Web服务器最大承受压力.Apache ...

  3. oracle 普通数据文件备份与恢复

    普通数据文件指:非system表空间.undo_tablespace表空间.临时表空间和只读表空间的数据文件.它们损坏导致用户数据不能访问,不会导致db自身异常.实例崩溃.数据库不恢复就无法启动的情况 ...

  4. 第六周课程总结&实验报告

    一.实验目的 (1)掌握类的继承 (2)变量的继承和覆盖,方法的继承,重载和覆盖的实现: 二.实验的内容 (1)根据下面的要求实现圆类Circle. 1.圆类Circle的成员变量:radius表示圆 ...

  5. Cassandra视图

    一.简介 Cassandra作为一个P2P结构的NOSQL数据库,使用与HBase不同的去中心化架构,在国外使用非常广泛,受欢迎程度甚至在Hbase之上.今天这篇文章介绍Cassandra在视图方面设 ...

  6. python可视化:matplotlib系列

    matplotlib 的官方文档: https://matplotlib.org/users/index.html 1 子图布局管理 布局参数 紧密布局的方法 坐标轴的公用和隐藏 2 直方图bar和b ...

  7. [Web 前端] 021 js 初识 Javascript

    1. Javascript 简介 1.1 定位 JS 是运行在浏览器端的脚本语言 1.1.1 关于浏览器 JS 由浏览器解释执行 JS 通常被直接嵌入 HTML 页面 1.1.2 关于脚本语言 JS ...

  8. net 架构师-数据库-sql server-003-T-SQL 基本语句

    3.1 基本SELECT语句 SELECT [ALL|DISTINCT] [TOP (<expression>)  [PERCENT] [WITH TIES]] <coloumn  ...

  9. exosip2 build

    Build eXosip on Win 1. download exosip  http://savannah.nongnu.org/projects/exosip/ 2. download libc ...

  10. 【洛谷 P1879】【[USACO06NOV]玉米田Corn Fields】

    题目: 链接 思路: Q:如何想到是状压DP? A:那是因为(我看了标签)\(1 ≤ M ≤ 12; 1 ≤ N ≤ 12\),\(2 ^ {12}\) 不过才...(Win7计算器使用中)\(409 ...