合理的控制线程池的大小:

下面内容来自网络。不过跟作者说的一致。不想自己敲了。留个记录。

要想合理的配置线程池的大小,首先得分析任务的特性,可以从以下几个角度分析:

任务的性质:CPU密集型任务、IO密集型任务、混合型任务。

任务的优先级:高、中、低。

任务的执行时间:长、中、短。

任务的依赖性:是否依赖其他系统资源,如数据库连接等。

性质不同的任务可以交给不同规模的线程池执行。

对于不同性质的任务来说,CPU密集型任务应配置尽可能小的线程,如配置CPU个数+1的线程数,IO密集型任务应配置尽可能多的线程,因为IO操作不占用CPU,不要让CPU闲下来,应加大线程数量,如配置两倍CPU个数+1,而对于混合型的任务,如果可以拆分,拆分成IO密集型和CPU密集型分别处理,前提是两者运行的时间是差不多的,如果处理时间相差很大,则没必要拆分了。

若任务对其他系统资源有依赖,如某个任务依赖数据库的连接返回的结果,这时候等待的时间越长,则CPU空闲的时间越长,那么线程数量应设置得越大,才能更好的利用CPU。 
当然具体合理线程池值大小,需要结合系统实际情况,在大量的尝试下比较才能得出,以上只是前人总结的规律。

在这篇如何合理地估算线程池大小?文章中发现了一个估算合理值的公式

最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目

比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:

最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目

可以得出一个结论: 
线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。 
以上公式与之前的CPU和IO密集型任务设置线程数基本吻合。

并发编程网上的一个问题 
高并发、任务执行时间短的业务怎样使用线程池?并发不高、任务执行时间长的业务怎样使用线程池?并发高、业务执行时间长的业务怎样使用线程池? 
(1)高并发、任务执行时间短的业务,线程池线程数可以设置为CPU核数+1,减少线程上下文的切换 
(2)并发不高、任务执行时间长的业务要区分开看: 
  a)假如是业务时间长集中在IO操作上,也就是IO密集型的任务,因为IO操作并不占用CPU,所以不要让所有的CPU闲下来,可以适当加大线程池中的线程数目,让CPU处理更多的业务 
  b)假如是业务时间长集中在计算操作上,也就是计算密集型任务,这个就没办法了,和(1)一样吧,线程池中的线程数设置得少一些,减少线程上下文的切换 
(3)并发高、业务执行时间长,解决这种类型任务的关键不在于线程池而在于整体架构的设计,看看这些业务里面某些数据是否能做缓存是第一步,增加服务器是第二步,至于线程池的设置,设置参考(2)。最后,业务执行时间长的问题,也可能需要分析一下,看看能不能使用中间件对任务进行拆分和解耦。

我们可以通过如下代码来获取处理器的数量:

//获取处理器的数量

System.out.println(Runtime.getRuntime().availableProcessors());

管理队列任务

ThreadPoolExecutor是ExecutorService的实现类。我们使用Executors.newCacheThreadPoo这些方法返回的对象就是已经定制好的ThreadPoolExecutor对象。

ThreadPoolExecutor允许提供一个BlockingQueue来保存等待执行的任务。

基本的任务排队方法有三种:

  • 有界队列
  • 无界队列
  • 直接提交

为了便于跨大量上下文使用,此类提供了很多可调整的参数和扩展挂钩。但是,强烈建议程序员使用较为方便的 Executors 工厂方法 Executors.newCachedThreadPool()(无界线程池,可以进行自动线程回收)、Executors.newFixedThreadPool(int)(固定大小线程池)和 Executors.newSingleThreadExecutor()(单个后台线程),它们均为大多数使用场景预定义了设置。否则,在手动配置和调整此类时,使用以下指导(这里只罗列了部分我关注的 API中有更多):

  • 排队

所有 BlockingQueue 都可用于传输和保持提交的任务。可以使用此队列与池大小进行交互:

排队有三种通用策略:

直接提交。工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。如:Executors.newCachedThreadPool()就是使用的这个。

无界队列。使用无界队列(例如,不具有预定义容量的 LinkedBlockingQueue)。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。 如Executors.newFixedThreadPool(int)(固定大小线程池)和 Executors.newSingleThreadExecutor()就是使用的这个。

有界队列。有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O 边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU 使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。 如果有界队列慢了,新的任务来了,就会根据预先设计好的饱和策略来处理。

  • 挂钩方法

此类提供 protected 可重写的 beforeExecute(java.lang.Thread, java.lang.Runnable)afterExecute(java.lang.Runnable, java.lang.Throwable) 方法,这两种方法分别在执行每个任务之前和之后调用。它们可用于操纵执行环境;例如,重新初始化 ThreadLocal、搜集统计信息或添加日志条目。此外,还可以重写方法 terminated() 来执行 Executor 完全终止后需要完成的所有特殊处理。

如果挂钩或回调方法抛出异常,则内部辅助线程将依次失败并突然终止。

  • 队列维护

方法 getQueue() 允许出于监控和调试目的而访问工作队列。强烈反对出于其他任何目的而使用此方法。remove(java.lang.Runnable)purge() 这两种方法可用于在取消大量已排队任务时帮助进行存储回收。

配置通过本标准方法返回的ThreadPoolExecutor

  1. public static void main(String[] args) {
  2.        ExecutorService es = Executors.newCachedThreadPool();
  3.        System.out.println(es instanceof ThreadPoolExecutor);
  4.        ThreadPoolExecutor tpe = (ThreadPoolExecutor)es;
  5.        tpe.setKeepAliveTime(1, TimeUnit.SECONDS);
  6.    }

上面是ThreadPoolExecutor的一个用途,其实可以完全自定义自己的ThreadPoolExecutor,不使用Executors.new生成的逻辑。事实上,Executors.new生成的就是配置好的ThreadPoolExecutor。

Java并发编程实战 第8章 线程池的使用的更多相关文章

  1. 《Java并发编程实战》第八章 线程池的使用 读书笔记

    一.在任务与运行策略之间的隐性解耦 有些类型的任务须要明白地指定运行策略,包含: . 依赖性任务.依赖关系对运行策略造成约束.须要注意活跃性问题. 要求线程池足够大,确保任务都能放入. . 使用线程封 ...

  2. java并发编程实战:第八章----线程池的使用

    一.在任务和执行策略之间隐性耦合 Executor框架将任务的提交和它的执行策略解耦开来.虽然Executor框架为制定和修改执行策略提供了相当大的灵活性,但并非所有的任务都能适用所有的执行策略. 依 ...

  3. java并发编程实战:第二章----线程安全性

    一个对象是否需要是线程安全的取决于它是否被多个线程访问. 当多个线程访问同一个可变状态量时如果没有使用正确的同步规则,就有可能出错.解决办法: 不在线程之间共享该变量 将状态变量修改为不可变的 在访问 ...

  4. 《Java并发编程实战》第二章 线程安全性 读书笔记

    一.什么是线程安全性 编写线程安全的代码 核心在于要对状态訪问操作进行管理. 共享,可变的状态的訪问 - 前者表示多个线程訪问, 后者声明周期内发生改变. 线程安全性 核心概念是正确性.某个类的行为与 ...

  5. 《Java并发编程实战》第二章 线程安全 札记

    一个.什么是线程安全 编写线程安全的代码 其核心是管理国事访问的操作. 共享,可变的状态的訪问 - 前者表示多个线程訪问, 后者声明周期内发生改变. 线程安全性 核心概念是正确性.某个类的行为与其规范 ...

  6. Java并发编程实战 第2章 线程安全性

    编写线程安全的 代码,核心在与对共享的和可变的对象的状态的访问. 如果多个线程访问一个可变的对象时没有使用同步,那么就会出现错误.在这种情况下,有3中方式可以修复这个问题: 不在线程之间共享该状态变量 ...

  7. Java并发编程(您不知道的线程池操作)

    Java并发编程(您不知道的线程池操作) 这几篇博客,一直在谈线程,设想一下这个场景,如果并发的线程很多,然而每个线程如果执行的时间很多的话,这样的话,就会大量的降低系统的效率.这时候就可以采用线程池 ...

  8. java并发编程笔记(七)——线程池

    java并发编程笔记(七)--线程池 new Thread弊端 每次new Thread新建对象,性能差 线程缺乏统一管理,可能无限制的新建线程,相互竞争,有可能占用过多系统资源导致死机或者OOM 缺 ...

  9. Java并发编程(您不知道的线程池操作), 最受欢迎的 8 位 Java 大师,Java并发包中的同步队列SynchronousQueue实现原理

    Java_并发编程培训 java并发程序设计教程 JUC Exchanger 一.概述 Exchanger 可以在对中对元素进行配对和交换的线程的同步点.每个线程将条目上的某个方法呈现给 exchan ...

随机推荐

  1. java 对象转整数,两个整数相除转百分数

    public class MathUtil { public static void main(String[] args) { System.out.println(toPercent(1,3)); ...

  2. Session对象的生命周期(面试题/笔试题)

    创建:第一次执行request.getSession()时创建 销毁: 1)服务器(非正常)关闭时 2)session过期/失效(默认30分钟) 问题:时间的起算点 从何时开始计算30分钟? 从不操作 ...

  3. 简单的servlet上传文件

    boolean multipartContent = ServletFileUpload.isMultipartContent(request);if (multipartContent==true) ...

  4. java:(九大内置对象,计算服务器访问次数,filter过滤器,MVC框架,MVC和三层架构的关系)

    1.九大内置对象: <%@ page language="java" import="java.util.*" pageEncoding="UT ...

  5. WinForm和WPF中注册热键

    由于.Net没有提供专门的类库处理热键,所以需要直接调用windows API来解决. HotKey为.NET调用Windows API的封装代码,主要是RegisterHotKey和Unregist ...

  6. iOS 开发】解决使用 CocoaPods 执行 pod install 时出现 - Use the `$(inherited)` flag ... 警告

    公司项目在执行 pod install 的时候总是出现很多黄色的警告,因为是警告并不会影响项目的正常编译,一直没有在意,但是总是有很多警告看起来很不舒服,于是就花了点时间解决掉了,下面将解决方法记录下 ...

  7. Unity中的动画系统和Timeline(4) AvatarMask和IK动画

    AvatarMask(骨骼遮罩) 在前面角色动画的基础上,角色在奔跑过程中捡起一块木头,双手要抱着这块木头.如果使用前面的方法,直接切换动画,那么就只剩下抱木头的动画,其它动画就没了.这时我们要使用下 ...

  8. python基础及安装

    一.python介绍 介绍  python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,Guido开始写能够解释Python语言语法的解释器.Python这个名 ...

  9. nginx+keepalived(双主)

    一.环境 nginx1   192.168.40.211 nginx2   192.168.40.132 vip1     192.168.40.223  主为keep1,从为keep2 vip2   ...

  10. HDU 1297 Children’s Queue (递推、大数相加)

    Children’s Queue Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...