@清晰掉 qsort()
qsort函数描述:
http://www.cnblogs.com/sooner/archive/2012/04/18/2455011.html
qsort()函数实现:
/***
*qsort.c - quicksort algorithm; qsort() library function for sorting arrays
* Copyright (c) Microsoft Corporation. All rights reserved.
*
*Purpose:
* To implement the qsort() routine for sorting arrays.
*
***************************************************************************** **/ #include <cruntime.h>
#include <stdlib.h>
#include <search.h>
#include <internal.h> /* 加快运行速度的优化选项 */
#pragma optimize("t", on) /* 函数原型*/
static void __cdecl shortsort(char *lo, char *hi, size_t width,
int (__cdecl *comp)(const void *, const void *));
static void __cdecl swap(char *p, char *q, size_t width); /* this parameter defines the cutoff between using quick sort and
insertion sort for arrays; arrays with lengths shorter or equal to the
below value use insertion sort */ /* 这个参数定义的作用是,当快速排序的循环中遇到大小小于CUTOFF的数组时,就使用插入
排序来进行排序,这样就避免了对小数组继续拆分而带来的额外开销。这里的取值8,是
经过测试以后能够时快速排序算法达到最快的CUTOFF的值。*/ #define CUTOFF 8 /* testing shows that this is good value */ /* 源代码中这里是qsort的代码,但是我觉得先解释了qsort要调用的函数的功能比较 好。 shortsort函数: 这个函数的作用,上面已经有提到。就是当对快速排序递归调用的时候,如果遇到
大小小于CUTOFF的数组,就调用这个函数来进行排序,而不是继续拆分数组进入下一层
递归。因为虽然这里用的是基本排序方法,它的运行时间和O(n^2)成比例,但是如果是
只有8个元素,它的速度比需要递归的快速排序要快得多。另外,在源代码的注释中,说
这是一个插入排序(insertion sort),但是我觉得这个应该是一个选择排序才对
(selection sort)。至于为什么用选择排序而不用插入排序,应该是和选择排序的元素
交换次数少有关系,只需要N-1次交换,而插入排序平均需要(N^2)/2次。之所以要选择
交换次数少的算法,是因为有可能数组里面的单个元素的大小很大,使得交换成为最主
要的性能瓶颈。 参数说明: char *lo; 指向要排序的子数组的第一个元素的指针
char *hi; 指向要排序的子数组的最后一个元素的指针
size_t width; 数组中单个元素的大小
int (__cdecl *comp)(const void *,const void *); 用来比较两个元素大
小的函数指针,这个函数是你在调用qsort的时候传入的参数,当前一个指针指向的元素
小于后一个时,返回负数;当相等时,返回0;当大于时,返回正数。*/ //选择排序
static void __cdecl shortsort (
char *lo,
char *hi,
size_t width,
int (__cdecl *comp)(const void *, const void *)
)
{
char *p, *max;
/* Note: in assertions below, i and j are alway inside original bound of array to sort. */
while (hi > lo) {
max = lo;
/*下面这个for循环作用是从lo到hi的元素中,选出最大的一个,max指针指向这个最大项*/
for (p = lo+width; p <= hi; p += width) {
if (comp(p, max) > ) {
max = p;
}
}
/*这里把最大项和hi指向的项向交换*/
swap(max, hi, width);
/*hi向前移动一个指针。经过这一步,在hi后面的是已经排好序的比未排序部分所有的数要大的数。*/
hi -= width;
}
} /*下面分析swap函数:
这个函数比较简单,就是交换两个项的操作,不过是用指针来实现的。
*/ static void __cdecl swap (
char *a,
char *b,
size_t width
)
{
char tmp;
if ( a != b )
/* Do the swap one character at a time to avoid potential alignment
problems. */
while ( width-- ) {
tmp = *a;
*a++ = *b;
*b++ = tmp;
}
} /*下面是最重要的部分,qsort函数:*/
/*使用的是非递归方式,所以这里有一个自定义的栈式结构,下面这个定义是栈的大小
*/ #define STKSIZ (8*sizeof(void*) - 2) void __cdecl qsort (
void *base,
size_t num,
size_t width,
int (__cdecl *comp)(const void *, const void *)
)
{
/*由于使用了某些技巧(下面会讲到),使得栈大小的需求不会大于1+log2(num),因此30的栈大小应该是足够了。为什么说是30呢?
其实在上面STKSIZ的定义中可以计算出sizeof(void*)=4,所以8*4-2=30*/
char *lo, *hi; /* ends of sub-array currently sorting 数组的两端项指针,用来指明数组的上界和下界*/
char *mid; /* points to middle of subarray 数组的中间项指针*/
char *loguy, *higuy; /* traveling pointers for partition step 循环中的游动指针*/
size_t size; /* size of the sub-array 数组的大小*/
char *lostk[STKSIZ], *histk[STKSIZ];
int stkptr; /* stack for saving sub-array to be processed 栈顶指针*/ /*如果只有一个或以下的元素,则退出*/
if (num < || width == )
return; /* nothing to do */ stkptr = ; /* initialize stack */ lo = base;
hi = (char *)base + width * (num-); /* initialize limits */ /*这个标签是伪递归的开始*/
recurse: size = (hi - lo) / width + ; /* number of el's to sort */
/*当size小于CUTOFF时,使用选择排序算法更快*/
if (size <= CUTOFF) {
shortsort(lo, hi, width, comp);
}
else {
/*首先我们要选择一个分区项。算法的高效性要求我们找到一个近似数组中间值
的项,但我们要保证能够很快找到它。我们选择数组的第一项、中间项和最后一项的中
间值,来避免最坏情况下的低效率。测试表明,选择三个数的中间值,比单纯选择数组
的中间项的效率要高。 我们解释一下为什么要避免最坏情况和怎样避免。在最坏情况下,快速排序算法
的运行时间复杂度是O(n^2)。这种情况的一个例子是已经排序的文件。如果我们选择最
后一个项作为划分项,也就是已排序数组中的最大项,我们分区的结果是分成了一个大
小为N-1的数组和一个大小为1的数组,这样的话,我们需要的比较次数是N + N-1 + N-2
+ N-3 +...+2+1=(N+1)N/2=O(n^2)。而如果选择前 中 后三个数的中间值,这种最坏情况的
数组也能够得到很好的处理。*/ mid = lo + (size / ) * width; /* find middle element */
/*第一项 中间项 和最后项三个元素排序*/ /* Sort the first, middle, last elements into order */
if (comp(lo, mid) > ) {
swap(lo, mid, width);
}
if (comp(lo, hi) > ) {
swap(lo, hi, width);
}
if (comp(mid, hi) > ) {
swap(mid, hi, width);
} /*下面要把数组分区成三块,一块是小于分区项的,一块是等于分区项的,而另一块是大于分区项的。*/
/*这里初始化的loguy 和 higuy两个指针,是在循环中用于移动来指示需要交换的两个元素的。
higuy递减,loguy递增,所以下面的for循环总是可以终止。*/ loguy = lo; /* traveling pointers for partition step 循环中的游动指针*/
higuy = hi; /* traveling pointers for partition step 循环中的游动指针*/ /* Note that higuy decreases and loguy increases on every iteration,
so loop must terminate. */
for (;;) {
/*开始移动loguy指针,直到A[loguy]>A[mid]*/
if (mid > loguy) {
do {
loguy += width;
} while (loguy < mid && comp(loguy, mid) <= );
} /*如果移动到loguy>=mid的时候,就继续向后移动,使得A[loguy]>a[mid]。
这一步实际上作用就是使得移动完loguy之后,loguy指针之前的元素都是不大于划分值的元素。*/
if (mid <= loguy) {
do {
loguy += width;
} while (loguy <= hi && comp(loguy, mid) <= );
} /*执行到这里的时候,loguy指针之前的项都比A[mid]要小或者等于它*/ /*下面移动higuy指针,直到A[higuy]<=A[mid]*/
do {
higuy -= width;
} while (higuy > mid && comp(higuy, mid) > ); /*如果两个指针交叉了,则退出循环。*/ if (higuy < loguy)
break; /* 此时A[loguy]>A[mid],A[higuy]<=A[mid],loguy<=hi,higuy>lo。*/
/*交换两个指针指向的元素*/
swap(loguy, higuy, width); /* If the partition element was moved, follow it. Only need
to check for mid == higuy, since before the swap,
A[loguy] > A[mid] implies loguy != mid. */ /*如果划分元素的位置移动了,我们要跟踪它。 因为在前面对loguy处理的两个循环中的第二个循环已经保证了loguy>mid, 即loguy指针不和mid指针相等。 所以我们只需要看一下higuy指针是否等于mid指针, 如果原来是mid==higuy成立了,那么经过刚才的交换,中间值项已经到了 loguy指向的位置(注意:刚才是值交换了,但是并没有交换指针。当higuy和mid相等,交换higuy和loguy指向的内容,higuy依然等于mid),所以让mid=loguy,重新跟踪中间值。*/ if (mid == higuy)
mid = loguy; /* A[loguy] <= A[mid], A[higuy] > A[mid]; so condition at top
of loop is re-established */ /*这个循环一直进行到两个指针交叉为止*/
} /* A[i] <= A[mid] for lo <= i < loguy,
A[i] > A[mid] for higuy < i < hi,
A[hi] >= A[mid]
higuy < loguy
implying:
higuy == loguy-1
or higuy == hi - 1, loguy == hi + 1, A[hi] == A[mid] */ /*上一个循环结束之后,因为还没有执行loguy指针和higuy指针内容的交换,所以loguy指针的前面的数组元素都不大于划分值,而higuy指针之后的数组元素都大于划分值,所以此时有两种情况: 1) higuy=loguy-1 2) higuy=hi-1,loguy=hi+1 其中第二种情况发生在一开始选择三个元素的时候,hi指向的元素和mid指向的元素值相等,而hi前面的元素全部都不大于划分值,使得移动loguy指针的时候,一直移动到了hi+1才停止,再移动higuy指针的时候,higuy指针移动一步就停止了,停在hi-1处。 */ /* Find adjacent elements equal to the partition element. The
doubled loop is to avoid calling comp(mid,mid), since some
existing comparison funcs don't work when passed the same value
for both pointers. */ higuy += width;
if (mid < higuy) {
do {
higuy -= width;
} while (higuy > mid && comp(higuy, mid) == );
}
if (mid >= higuy) {
do {
higuy -= width;
} while (higuy > lo && comp(higuy, mid) == );
} /* OK, now we have the following:
higuy < loguy
lo <= higuy <= hi
A[i] <= A[mid] for lo <= i <= higuy
A[i] == A[mid] for higuy < i < loguy
A[i] > A[mid] for loguy <= i < hi
A[hi] >= A[mid] */ /* We've finished the partition, now we want to sort the subarrays
[lo, higuy] and [loguy, hi].
We do the smaller one first to minimize stack usage.
We only sort arrays of length 2 or more.*/ /*
我们可以想像一下,对于一个已经排序的数组,如果每次分成N-1和1的数组,
而我们又每次都先处理N-1那一半,那么我们的递归深度就是和N成比例,这样对于大N,栈空间的开销是很大的。
如果先处理1的那一半,栈里面最多只有2项。当划分元素刚好在数组中间时,栈的长度是logN。
对于栈的操作,就是先把大的数组信息入栈。
*/ if ( higuy - lo >= hi - loguy ) {
if (lo < higuy) {
lostk[stkptr] = lo;
histk[stkptr] = higuy;
++stkptr;
} /* save big recursion for later */ if (loguy < hi) {
lo = loguy;
goto recurse; /* do small recursion */
}
}
else {
if (loguy < hi) {
lostk[stkptr] = loguy;
histk[stkptr] = hi;
++stkptr; /* save big recursion for later */
} if (lo < higuy) {
hi = higuy;
goto recurse; /* do small recursion */
}
}
} /* We have sorted the array, except for any pending sorts on the stack.
Check if there are any, and do them. */ /*出栈操作,直到栈为空,退出循环*/ --stkptr;
if (stkptr >= ) {
lo = lostk[stkptr];
hi = histk[stkptr];
goto recurse; /* pop subarray from stack */
}
else
return; /* all subarrays done */
}
@清晰掉 qsort()的更多相关文章
- @清晰掉 malloc是如何分配内存的?
任何一个用过或学过C的人对malloc都不会陌生.大家都知道malloc可以分配一段连续的内存空间,并且在不再使用时可以通过free释放掉.但是,许多程序员对malloc背后的事情并不熟悉,许多人甚至 ...
- @清晰掉 sprintf sscanf双胞胎
sprintf() 格式化输出函数(图形) 功能: 函数sprintf()用来作格式化的输出.用法: 此函数调用方式为int sprintf(char *string,char *format,arg ...
- @清晰掉 GDB调试器中的战斗机
GDB 的命令很多,本文不会全部介绍,仅会介绍一些最常用的.在介绍之前,先介绍GDB中的一个非常有用的功能:补齐功能.它就如同Linux下SHELL中的命令补齐一样.当你输入一个命令的前几个字符,然后 ...
- @清晰掉 makefile
参阅: http://www.cnblogs.com/wang_yb/p/3990952.html
- @清晰掉 swap函数
swap函数估计是一个各种各样程序都会频繁用到的子程序,可是你知道它究竟有多少种不同的写法吗?下面我就列举我知道的几种swap函数来跟大家分享一下. (1)经典型---嫁衣法 无论是写程序还是干其他事 ...
- @清晰掉 string.h之基础堵漏
一个标准的strcpy函数: 原本以为自己对strcpy还算比较了解,结果面试时还是悲剧了. 下面给出网上strcpy的得分版本: 2分 void strcpy( char *strDest, cha ...
- @清晰掉 GNU C __attribute__
__attribute__((packed))详解 1. __attribute__ ((packed)) 的作用就是告诉编译器取消结构在编译过程中的优化对齐,按照实际占用字节数进行对齐,是GCC特有 ...
- @清晰掉 spi协议及工作原理分析
说明.文章摘自:SPI协议及其工作原理浅析 http://bbs.chinaunix.net/thread-1916003-1-1.html 一.概述. SPI, Serial Perripheral ...
- @清晰掉 Sizeof与字符串
Sizeof与字符串 1.以字符串形式出现的,编译器都会为该字符串自动添加一个0作为结束符 如在代码中写 "abc",那么编译器帮你存储的是"abc/0" 2 ...
随机推荐
- JavaEE--EL表达式
EL(Expression Language)是为了使JSP写起来更加简单.表达式语言的灵感来自于 ECMAScript 和 XPath 表达式语言,它提供了在 JSP 中简化表达式的方法,使得用户对 ...
- 在CentOS7上无人值守安装Zabbix4.2
#!/bin/bash # 检查操作系统版本,该脚本只能运行在 Centos .x 系统上 cat /etc/redhat-release |grep -i centos |grep '7.[[:di ...
- 使用QtXlsx来读写excel文件
概述:QtXlsx是功能非常强大和使用非常方便的操作excel类库.包括对excel数据读写.excel数据格式设置及在excel里面根据数据生成各种图表. 下面重点介绍如何安装和使用QtXlsx. ...
- springboot中model,modelandview,modelmap的区别与联系
springboot 中Model,ModelAndView,ModelMap的区别与联系 Model是一个接口,它的实现类为ExtendedModelMap,继承ModelMap类 public c ...
- 设置centos的yum仓库源为阿里源
前提 使我们的主机能够连接到外网 cd /etc/yum.repos.d/ #切换到yum仓库目录下 rm -rf * #删除默认配置仓库 wget -O /etc/yum.repos.d/CentO ...
- x64工程属性 选择切换不了
删除x64工程属性 重新建立新的 配置属性 和导入工程类似 属性冲突 最好重新建立新的工程 解决
- Spring mvc数据转换 格式化 校验(转载)
原文地址:http://www.cnblogs.com/linyueshan/p/5908490.html 数据绑定流程 1. Spring MVC 主框架将 ServletRequest 对象及目标 ...
- Linux系统中的硬件问题如何排查?(4)
Linux系统中的硬件问题如何排查?(4) 2013-03-27 10:32 核子可乐译 51CTO.com 字号:T | T 在Linux系统中,对于硬件故障问题的排查可能是计算机管理领域最棘手的工 ...
- Modbus软件开发实战指南 之 开发自己的Modbus Poll工具 - 3
Modbus-RTU 一.数据分析 两个设备(单片机)通讯,用的是Modbus协议. 在单片机中拿出一部分内存(RAM)进行两个设备通讯,例如: 说明: OX[20] 代表是 ...
- JSP 和Servlet 有有什么关系?
Servlet是一个特殊的Java程序,它运行于服务器的JVM中,能够依靠服务器的支持向浏览器提供显示内容. JSP本质上是Servlet的一种简易形式, JSP会被服务器处理成一个类似于Servle ...