题目描述

你有一个长度为$n$的排列$P$与一个正整数$K$
你可以进行如下操作若干次使得排列的字典序尽量小
对于两个满足$|i−j|\geqslant K$且$|P_i−P_j|=1$的下标$i$与$j$,交换$P_i$与$P_j$


输入格式

第一行包括两个正整数$n$与$K$
第二行包括$n$个正整数,第$i$个正整数表示$P_i$


输出格式

输出一个新排列表示答案
输出共$n$行,第$i$行表示$P_i$


样例

样例输入:

8 3
4 5 7 8 3 1 2 6

样例输出:

1
2
6
7
5
3
4
8


数据范围与提示

对于前$20\%$的数据满足$n\leqslant 6$
对于前$50\%$的数据满足$n\leqslant 2,000$
对于$100\%$的数据满足$n\leqslant 500,000$


题解

这是一道暴力有$90$分的题……

先来考虑如何换,我们每扫到一个位置,发现比它小$1$的在它右边距离大于$K$的位置就交换,不断的扫整个序列,直到无法交换为止,这时候肯定是最优的。

交换不大于$n$次,瓶颈就在于如何快速查询交换的位置。

首先,我们设$pos[i]$表示权值为$i$的数字在哪儿,即先当与权值与下标调换。

那么,我们另$P_i$的字典序最小也就是另$pos[i]$的字典序最小,则操作转化为:相邻元素且权值差$\geqslant K$可以交换。

接着,问题开始抽象化,我们考虑建图……

先来考虑暴力建边,如果$i$与后面的$j$相比,$abs(pos[i]-pos[j])<K$则其顺序已经确定,那么可以相互连边,然后跑拓扑。

但是暴力建边显然无论是时间还是空间都会死掉(还是$90$分……)

那么我们靠有些边是无用的,即如果$A\rightarrow B$且$B\rightarrow C$,那么$A\rightarrow C$这条边就是无用的,但是显然我们现在的策略无法避免,考虑如何处理。

这种情况我们一般都考虑倒着做,因为$pos[i]$连向$(pos[i]-K,pos[i])\cup(pos[i],pos[i]+K)$,但是我们只需要分别连向两个区间内下标最小的那个,用线段树快速查询即可。

时间复杂度:$\Theta(n\log n)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
#define L(x) x<<1
#define R(x) x<<1|1
using namespace std;
struct rec{int nxt,to;}e[1000001];
int head[500001],cnt;
int n,K;
int tr[2000001];
int pos[500001],du[500001];
int ans[500001];
priority_queue<int,vector<int>,greater<int> > q;
void add(int x,int y)
{
e[++cnt].nxt=head[x];
e[cnt].to=y;
head[x]=cnt;
}
void pushup(int x){tr[x]=min(tr[L(x)],tr[R(x)]);}
void insert(int x,int l,int r,int k,int w)
{
if(l==r){tr[x]=w;return;}
int mid=(l+r)>>1;
if(k<=mid)insert(L(x),l,mid,k,w);
else insert(R(x),mid+1,r,k,w);
pushup(x);
}
int ask(int x,int l,int r,int L,int R)
{
if(r<L||R<l)return 0x3f3f3f3f;
if(L<=l&&r<=R)return tr[x];
int mid=(l+r)>>1;
return min(ask(L(x),l,mid,L,R),ask(R(x),mid+1,r,L,R));
}
int main()
{
scanf("%d%d",&n,&K);
memset(tr,0x3f,sizeof(tr));
for(int i=1;i<=n;i++){int a;scanf("%d",&a);pos[a]=i;}
for(int i=n;i;i--)
{
int x;
x=ask(1,1,n,pos[i]+1,min(pos[i]+K-1,n));
if(x!=0x3f3f3f3f){add(pos[i],pos[x]);du[pos[x]]++;}
x=ask(1,1,n,max(1,pos[i]-K+1),pos[i]-1);
if(x!=0x3f3f3f3f){add(pos[i],pos[x]);du[pos[x]]++;}
insert(1,1,n,pos[i],i);
}
int now=0;
for(int i=1;i<=n;i++)
if(!du[i])q.push(i);
while(!q.empty())
{
int x=q.top();q.pop();
ans[x]=++now;
for(int i=head[x];i;i=e[i].nxt)
if(!(--du[e[i].to]))q.push(e[i].to);
}
for(int i=1;i<=n;i++)printf("%d\n",ans[i]);
return 0;
}

rp++

[CSP-S模拟测试]:Permutation(线段树+拓扑排序+贪心)的更多相关文章

  1. BZOJ4383 Pustynia(线段树+拓扑排序)

    线段树优化建图暴力拓扑排序即可.对于已确定的数,拓扑排序时dp,每个节点都尽量取最大值,如果仍与已确定值矛盾则无解.叶子连出的边表示大于号,其余边表示大于等于. #include<iostrea ...

  2. hdu 5195 DZY Loves Topological Sorting 线段树+拓扑排序

    DZY Loves Topological Sorting Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/sho ...

  3. HDU5638 / BestCoder Round #74 (div.1) 1003 Toposort 线段树+拓扑排序

    Toposort   问题描述 给出nn个点mm条边的有向无环图. 要求删掉恰好kk条边使得字典序最小的拓扑序列尽可能小. 输入描述 输入包含多组数据. 第一行有一个整数TT, 表示测试数据组数. 对 ...

  4. BZOJ3832[Poi2014]Rally——权值线段树+拓扑排序

    题目描述 An annual bicycle rally will soon begin in Byteburg. The bikers of Byteburg are natural long di ...

  5. 【bzoj3638】Cf172 k-Maximum Subsequence Sum 模拟费用流+线段树区间合并

    题目描述 给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少. 输入 The first line contains inte ...

  6. BZOJ.3638.CF172 k-Maximum Subsequence Sum(模拟费用流 线段树)

    题目链接 各种zz错误..简直了 /* 19604kb 36292ms 题意:选$k$段不相交的区间,使其权值和最大. 朴素线段树:线段树上每个点维护O(k)个信息,区间合并时O(k^2),总O(mk ...

  7. BZOJ_3012_[Usaco2012 Dec]First!_trie树+拓扑排序

    BZOJ_3012_[Usaco2012 Dec]First!_trie树+拓扑排序 题意: 给定n个总长不超过m的互不相同的字符串,现在你可以任意指定字符之间的大小关系.问有多少个串可能成为字典序最 ...

  8. BZOJ_4010_[HNOI2015]菜肴制作_拓扑排序+贪心

    BZOJ_4010_[HNOI2015]菜肴制作_拓扑排序+贪心 Description 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜 ...

  9. 【8.26校内测试】【重构树求直径】【BFS模拟】【线段树维护DP】

    题目性质比较显然,相同颜色联通块可以合并成一个点,重新建树后,发现相邻两个点的颜色一定是不一样的. 然后发现,对于一条链来说,每次把一个点反色,实际上使点数少了2个.如下图 而如果一条链上面有分支,也 ...

随机推荐

  1. c++静态成员变量初始化时不受访问权限控制

    1.要在类外初始化,const 成员变量才能在类内初始化 2.初始化在类外,而不在main函数内 class A{ private: string name; A(){ name = "a& ...

  2. 3 Vue.js基础

    Vue中的过滤器.钩子函数.指令.字符串填充.以及部分方法使用的案例(操作表单) <!DOCTYPE html> <html lang="en"> < ...

  3. Java-Lambda表达式第二篇认识Lambda表达式

    接上面的方法引用和构造器引用: 3>引用某类对象的实例方法 @FunctionalInterface public interface Cut{ String cut(String str,in ...

  4. Acwing143. 最大异或对

    在给定的N个整数A1,A2……ANA1,A2……AN中选出两个进行xor(异或)运算,得到的结果最大是多少? 输入格式 第一行输入一个整数N. 第二行输入N个整数A1A1-ANAN. 输出格式 输出一 ...

  5. python 合并字典/拼接字典

    针对于python 3.5以上版本: 最好的最快的最优雅的方法是: result_dict = {**dict_1, **dict_2} 例如:( dict 代表 dictionary,也就是字典) ...

  6. HTTP协议详解??

    HTTP协议: HTTP (hypertext transport protocol) , 即 超 文 本 传 输 协 议 . 这 个 协 议 详 细 规 定 了 浏 览 器 和 万 维 网 服 务 ...

  7. 【Matlab技巧】工作区变量如何添加到Simulink中?

    对新手来说,在进行simulink仿真时想把工作区的变量添加到Simulink中,这样在如transfer模块中使用时可以直接输变量即可. 如这样: 那么如何对Simulink仿真文件自动赋值呢? 1 ...

  8. sql server 中 like 中文不匹配问题

    原文:https://blog.csdn.net/miao0967020148/article/details/71108056 MS-SQL Server select * from Book wh ...

  9. NancyFx框架之检测任务管理器

    先建一个空的项目和之前的NancyFx系列一样的步骤 然后建三个文件夹Models,Module,Views 然后分别安装一下组件 jQuery Microsoft.AspNet.SignalR Mi ...

  10. 微信小程序的短信接口

    使用聚合数据 (网址)  https://www.juhe.cn/docs? 注册部分略! 这是登录部分的. 一: 二.我的接口