比赛链接:2016 ICPC Mid-Central USA Region

题目链接:Windy Path

Description

Consider following along the path in the figure above, starting from \((4,4)\) and moving to \((2,5)\). Then the path turns rightward toward \((1,6)\), then sharp left to \((5,0)\) and finally sharp left again to \((4,2)\). If we use ‘\(L\)’ for left and ‘RR’ for right, we see that the sequence of turn directions is given by RLL. Notice that the path does not cross itself: the only intersections of segments are the connection points along the path.

Consider the reverse problem: Given points in an arbitrary order,say \((2,5),(1,6),(4,4),(5,0),(4,2)\),could you find an ordering of the points so the turn directions along the path are given by RLL? Of course to follow the path in the figure,you would start with the third point in the list \((4,4)\),then the first \((2,5)\),second \((1,6)\), fourth \((5,0)\), and fifth \((4,2)\), so the permutation of the points relative to the given initial order would be: \(3\ 1 \ 2 \ 4 \ 5\).

Input

The first line of the input contains an integer \(N\), specifying the number of points such that \(3 \le N \le 50\). The following NN lines each describe a point using two integers \(x_i\) and \(y_i\) such that \(0 \le x_i,y_i \le 1000\). The points are distinct and no three are collinear (i.e., on the same line). The last line contains a string of \(N - 2\) characters, each of which is either ‘\(L\)’ or ‘\(R\)’.

Output

A permutation of\(\{ 1,...,N \}\) that corresponds to a nonintersecting path satisfying the turn conditions. The numbers are to be displayed with separating spaces. (There are always one or more possible solutions, and any one may be used.)

Solution

题意

给定 \(n\) 个点的坐标和一个包含 \(R\) 和 \(L\) 的序列,其中 \(L\) 代表左转,\(R\) 代表右转,求一个访问每个点顺序满足给定的序列。

题解

贪心 构造 计算几何

由于是 special judge,只要想出一种构造方法就可以。本题可以贪心。

  1. 首先选择最下面最左边的点作为起点,(起点不唯一,比如最左边最下面也可以)。
  2. 如果第一个字符是 \(R\),第二个点选择最左边的点;反之选择最右边的点。
  3. 之后每次考察连续两个字符:
    • 如果是 \(RL\),选择右边最后一个
    • 如果是 \(LR\),选择左边最后一个
    • 如果是 \(RR\),选择右边第一个
    • 如果是 \(RR\),选择左边第一个

判断点是在向量的左边还是右边可以用 \(ToLeftTest\),查询第一个还是最后一个可以用夹角判断。

/*
思路:
贪心
1. R: 左边第一个
2. L: 右边第一个
3. RL: 右边最后一个
4. LR: 左边最后一个
5. LL: 左边第一个
6. RR: 右边第一个
*/ #include <bits/stdc++.h>
using namespace std; struct Point {
int x, y, index;
} p[100]; int area2(Point p, Point q, Point s) {
return p.x * q.y - p.y * q.x + q.x * s.y - q.y * s.x + s.x * p.y - s.y * p.x;
} // 判断某个点在向量的左边还是右边
bool toLeftTest(Point p, Point q, Point s) {
return area2(p, q, s) > 0;
} int cmp(Point p1, Point p2) {
if (p1.y == p2.y)
return p1.x < p2.x;
return p1.y < p2.y;
} // 求向量 pq 与 向量 ps 之间的夹角
double ang(Point p, Point q, Point s) {
double x1 = q.x - p.x, y1 = q.y - p.y;
double x2 = s.x - p.x, y2 = s.y - p.y;
double ans = (x1 * x2 + y1 * y2) / (sqrt(x1 * x1 + y1 * y1) * sqrt(x2 * x2 + y2 * y2));
return acos(ans);
} vector<Point> ans; // 存放答案
int vis[100]; // 标记已访问过的点 int main() {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
scanf("%d%d", &p[i].x, &p[i].y);
p[i].index = i;
}
sort(p + 1, p + n + 1, cmp);
ans.push_back(p[1]); // 起点
vis[p[1].index] = 1;
double min_ang = 10;
int min_index = 1;
Point tmp, tmp2 = p[1]; // 保存上两个点 string str;
cin >> str;
// 第一个点
if (str[0] == 'R') {
tmp.x = p[1].x - 1;
tmp.y = p[1].y;
for (int i = 2; i <= n; ++i) {
double angle = ang(p[1], p[i], tmp);
if (angle < min_ang) {
min_ang = angle;
min_index = i;
}
}
ans.push_back(p[min_index]);
vis[p[min_index].index] = 1;
} else {
tmp.x = p[1].x + 1;
tmp.y = p[1].y;
for (int i = 2; i <= n; ++i) {
double angle = ang(p[1], p[i], tmp);
if (angle < min_ang) {
min_ang = angle;
min_index = i;
}
}
ans.push_back(p[min_index]);
vis[p[min_index].index] = 1;
}
tmp = p[min_index];
// 之后的点
for (int i = 0; i < str.size() - 1; ++i) {
if (str[i] == 'R' && str[i + 1] == 'L') {
min_ang = 10;
for (int i = 1; i <= n; ++i) {
if (vis[p[i].index])
continue;
if (toLeftTest(tmp2, tmp, p[i]))
continue;
double angle = ang(tmp, tmp2, p[i]);
if (min_ang > angle) {
min_ang = angle;
min_index = i;
}
}
ans.push_back(p[min_index]);
vis[p[min_index].index] = 1;
tmp2 = tmp;
tmp = p[min_index];
}
else if (str[i] == 'R' && str[i + 1] == 'R') {
min_ang = 0;
for (int i = 1; i <= n; ++i) {
if (vis[p[i].index])
continue;
if (toLeftTest(tmp2, tmp, p[i]))
continue;
double angle = ang(tmp, tmp2, p[i]);
if (min_ang < angle) {
min_ang = angle;
min_index = i;
}
}
ans.push_back(p[min_index]);
vis[p[min_index].index] = 1;
tmp2 = tmp;
tmp = p[min_index];
} else if (str[i] == 'L' && str[i + 1] == 'R') {
min_ang = 10;
for (int i = 1; i <= n; ++i) {
if (vis[p[i].index])
continue;
if (!toLeftTest(tmp2, tmp, p[i]))
continue;
double angle = ang(tmp, tmp2, p[i]);
if (min_ang > angle)
{
min_ang = angle;
min_index = i;
}
}
ans.push_back(p[min_index]);
vis[p[min_index].index] = 1;
tmp2 = tmp;
tmp = p[min_index];
} else {
min_ang = 0;
for (int i = 1; i <= n; ++i) {
if (vis[p[i].index])
continue;
if (!toLeftTest(tmp2, tmp, p[i]))
continue;
double angle = ang(tmp, tmp2, p[i]);
if (min_ang < angle) {
min_ang = angle;
min_index = i;
}
}
ans.push_back(p[min_index]);
vis[p[min_index].index] = 1;
tmp2 = tmp;
tmp = p[min_index];
}
}
// 最后一个点
for (int i = 1; i <= n; ++i) {
if (!vis[p[i].index]) {
ans.push_back(p[i]);
break;
}
}
for (int i = 0; i < ans.size(); ++i) {
printf("%d", ans[i].index);
printf("%s", i == ans.size() - 1 ? "\n" : " ");
}
return 0;
}

2016 ICPC Mid-Central USA Region J. Windy Path (贪心)的更多相关文章

  1. 2016 ICPC总结

    2016 ICPC总结 九月份开学,开始知识点的补充,刚开始的几周都在刷acmsteps,十月开始进行专题性的学习,首先进行的数据结构,给自己定的计划,十一月前看完数据结构,刚开始的时候看的都是以前的 ...

  2. HYNB Round 8: 2016 ICPC Amritapuri Regionals

    HYNB Round 8: 2016 ICPC Amritapuri Regionals A - Tim and BSTs 做法 经典的树 DP 问题. \(dp[u][i]\) 表示考虑以 u 为根 ...

  3. ICPC North Central NA Contest 2018

    目录 ICPC North Central NA Contest 2018 1. 题目分析 2. 题解 A.Pokegene B.Maximum Subarrays C.Rational Ratio ...

  4. ICPC Mid-Central USA Region 2019 题解

    队友牛逼!带我超神!蒟蒻的我还是一点一点的整理题吧... Dragon Ball I 这个题算是比较裸的题目吧....学过图论的大概都知道应该怎么做.题目要求找到七个龙珠的最小距离.很明显就是7个龙珠 ...

  5. 2016 ICPC青岛站---k题 Finding Hotels(K-D树)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5992 Problem Description There are N hotels all over ...

  6. HDU 5884 Sort -2016 ICPC 青岛赛区网络赛

    题目链接 #include <iostream> #include <math.h> #include <stdio.h> #include<algorith ...

  7. 2013 ACM/ICPC Asia Regional Changsha Online J Candies

    AC了,但是不知道为什么,但是恶心的不得了~最近写代码,思路都非常清晰,但是代码各种bug~T.T~说说思路吧:二分~330ms~ 小队友fribbi的思路是离线250msAC~ 预处理solve函数 ...

  8. ICPC 2018 南京网络赛 J Magical Girl Haze(多层图最短路)

    传送门:https://nanti.jisuanke.com/t/A1958 题意:n个点m条边的路,你有k次机会将某条路上的边权变为0,问你最短路径长度 题解:最短路变形,我们需要在常规的最短路上多 ...

  9. 2016 ICPC大连站---F题 Detachment

    题意:输入一个x,将x拆分成一些小的数(这些数不能相同,即x=a1+a2+......   ai!=aj when i!=j),然后这些数相乘得到一个成积(s=a1*a2*......),求最大的乘积 ...

随机推荐

  1. 54、salesforce学习笔记(一)

    Decimal priceDecimal = -4.50; System.debug('小数的绝对值为:'+priceDecimal.abs()); System.debug('priceDecima ...

  2. 3、jQuery面向对象

    1.首先介绍callback.js对ajax进行了封装 function ajaxFunction(){ var xmlHttp; try{ // Firefox, Opera 8.0+, Safar ...

  3. 用 Flask 来写个轻博客 (7) — (M)VC_models 的关系(many to many)

    目录 目录 前文列表 扩展阅读 前期准备 多对多 使用样例 一直在使用的 session 前文列表 用 Flask 来写个轻博客 (1) - 创建项目 用 Flask 来写个轻博客 (2) - Hel ...

  4. python作业/练习/实战:生成随机密码

    作业要求1.写一个函数,函数的功能是生成一批密码,存到文件里面 def gen_password(num): #num代表生成多少条密码2.密码复杂度要求 1)长度在,8-16位之间 2)密码必须包括 ...

  5. Django框架(十八)—— auth框架:用户登录、注册、认证

    目录 auth模块 一.什么是author模块 二.auth模块的使用 1.创建超级用户(create_superuser()) 2.验证用户(authenticate()) 3.登录用户(login ...

  6. 如何将英文版的Firefox添加中文版语言包

    http://ftp.mozilla.org/pub/firefox/releases/ xpi中下载zh_CN.xpi 文件 , 把文件拖拽进火狐浏览器 在地址栏输入”about:config”,回 ...

  7. 实用maven笔记二-信息&依赖管理

    目前我经历的公司的主要项目管理工具都是maven,maven除了是一个实用的构建工具外,也是一个功能强大的项目管理工具.其管理功能分为信息管理和依赖管理.通过pom.xml文件实现. 信息管理 信息管 ...

  8. python_模块 collections,random

    collections模块 在内置数据类型(dict.list.set.tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter.deque.defaultdict. ...

  9. 16-python基础-字典

    1.字典的定义 dictionary(字典)是除列表以外python之中最灵活的数据类型. 字典同样可以存储多个数据. 通常用于存储一个物体的相关信息. 和列表的区别 列表是有序的对象集合 字典是无序 ...

  10. LLppdd never give up!

    LLppdd never give up! Time Limit: 1 s Memory Limit: 256 MB 题目背景 LLppdd是个被毒害的小朋友,他的初中生涯充满了坎坷. 直到初三的某一 ...