pandas.crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True, normalize=False)

index : array-like, Series, or list of arrays/Series

Values to group by in the rows

columns : array-like, Series, or list of arrays/Series

Values to group by in the columns

values : array-like, optional

Array of values to aggregate according to the factors. Requires aggfunc be specified.

aggfunc : function, optional

If specified, requires values be specified as well

rownames : sequence, default None

If passed, must match number of row arrays passed

colnames : sequence, default None

If passed, must match number of column arrays passed

margins : boolean, default False

Add row/column margins (subtotals)

dropna : boolean, default True

Do not include columns whose entries are all NaN

normalize : boolean, {‘all’, ‘index’, ‘columns’}, or {0,1}, default False

Normalize by dividing all values by the sum of values.

  • If passed ‘all’ or True, will normalize over all values.
  • If passed ‘index’ will normalize over each row.
  • If passed ‘columns’ will normalize over each column.
  • If margins is True, will also normalize margin values.

New in version 0.18.1.

In [1]:
import numpy as np
a = np.array(["foo", "foo", "foo", "foo", "bar", "bar","bar", "bar", "foo", "foo", "foo"], dtype=object)
a
In [2]:
b = np.array(["one", "one", "one", "two", "one", "one", "one", "two", "two", "two", "one"], dtype=object)
b
In [3]: 
pd.crosstab(a,b)
Out[3]:
col_0 one two
row_0    
bar 3 1
foo 4 3
In [4]:
 pd.crosstab(a, b, rownames=['a'], colnames=['b'])
 
Out[4]:
b one two
a    
bar 3 1
foo 4 3
In [5] 
c = np.array(["dull", "dull", "shiny", "dull", "dull", "shiny","shiny", "dull", "shiny", "shiny", "shiny"],
dtype=object)
c
In [6]:
import pandas as pd
pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
Out[6]:
b one two
c dull shiny dull shiny
a        
bar 1 2 1 0
foo 2 2 1 2
In [7]:
foo1 = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c'])
bar1= pd.Categorical(['d', 'e'], categories=['d', 'e', 'f'])
pd.crosstab(foo1, bar1,dropna='true')
# 'c' and 'f' are not represented in the data,
# and will not be shown in the output because
# dropna is True by default. Set 'dropna=False'
# to preserve categories with no data 
 
Out[7]:
col_0 d e f
row_0      
a 1 0 0
b 0 1 0
c 0 0 0
 

pandas的corsstab的更多相关文章

  1. pandas基础-Python3

    未完 for examples: example 1: # Code based on Python 3.x # _*_ coding: utf-8 _*_ # __Author: "LEM ...

  2. 10 Minutes to pandas

    摘要   一.创建对象 二.查看数据 三.选择和设置 四.缺失值处理 五.相关操作 六.聚合 七.重排(Reshaping) 八.时间序列 九.Categorical类型   十.画图      十一 ...

  3. 利用Python进行数据分析(15) pandas基础: 字符串操作

      字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join( ...

  4. 利用Python进行数据分析(10) pandas基础: 处理缺失数据

      数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...

  5. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  6. 利用Python进行数据分析(9) pandas基础: 汇总统计和计算

    pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索 ...

  7. 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...

  8. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  9. pandas.DataFrame对行和列求和及添加新行和列

    导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFra ...

随机推荐

  1. Chrome OS支持在窗口中运行Linux了!!!

    借助Crouton Chrome扩展,Chrome OS可以在窗口中运行Linux了.在使用该扩展之前,你需要先将自己的Chromebook设置成开发者模式(Develeper Mode). 此前,C ...

  2. JForum论坛安装以及部署(转)

    链接地址:https://www.cnblogs.com/Amos-Turing/p/7151009.html 下载JForum2.1.9 包手动放到tomcat的webapps下面, 这次打开网址: ...

  3. 模糊查询基于select遍历json文件自动填充的实现

    HTML页面 <tr> <td align="left"><span>案由</span> <input type=" ...

  4. cocos2dx基础篇(25) 简单碰撞检测

    [3.x] 将数学类 CCPoint.CCRect 改为v3.x版本的 Vec2.Rect 就好了. [简单碰撞检测] 在一些游戏中经常会遇到碰撞检测的情况,如愤怒的小鸟飞出去后,是否与石头发生碰撞. ...

  5. html+css实现奥运五环(环环相扣)

    <!DOCTYPE html> <html> <head> <title>奥运五环</title> <style type=" ...

  6. python 并发编程 多线程与多进程的区别

    1.开进程的开销远大于开线程 2 同一进程内的线程共享该进程的数据,进程之间地址空间是隔离的 1 开进程的开销远大于开线程 from multiprocessing import Process de ...

  7. MySQL优化步 (InnoDB)

    MySQL优化步 (InnoDB) 优化的优先级 数据库结构设计 SQL语句 数据库存储引擎和选择和参数配置 系统选择及优化 硬件升级 图书 MySQL必知必会 高性能MySQL 深入浅出MySQL ...

  8. linux:文件/目录权限设置

    一.权限修改命令:     chmod [OPTION]... MODE[,MODE]... FILE...二.文件/目录MODE指定方式: 1).八进制(r=4,w=2,x=1) [root@pin ...

  9. iter的特殊用法以及偏函数partial

    iter()的特殊用法 常规使用 iter(obj),会返现一个迭代器,如果 obj 不是可迭代对象,则会报错. 特殊用法(哨兵模式) iter(object[, sentinel]) sentine ...

  10. 【二】Django 视图和url配置

    在新建的Django项目下,新建一个views的python文件,编辑如下代码 from django.http import HttpResponse def hello(request): ret ...