题意:

思路:

【问题分析】

求最长两条不相交路径,用最大费用最大流解决。

【建模方法】

把第i个城市拆分成两个顶点<i.a>,<i.b>。

1、对于每个城市i,连接(<i.a>,<i.b>)一条容量为1,费用为1的有向边,特殊地(<1.a>,<1.b>)和(<N.a>,<N.b>)容量设为2。

2、如果城市i,j(j>i)之间有航线,从<i.b>到<j.a>连接一条容量为1,费用为0的有向边。

求源<1.a>到汇<N.b>的最大费用最大流。如果(<1.a>,<1.b>)不是满流,那么无解。否则存在解,即为最大费用最大流量 - 2。

【建模分析】

每条航线都是自西向东,本题可以转化为求航线图中从1到N两条不相交的路径,使得路径长度之和最大。转化为网络流模型,就是找两条最长的增广路。由于每个城市只能访问一次,要把城市拆成两个

点,之间连接一条容量为1的边,费用设为1。因为要找两条路径,所以起始点和终点内部的边容量要设为2。那么费用流值-2就是两条路径长度之和,为什么减2,因为有两条容量为2的边多算了1的费用。

求最大费用最大流后,如果(<1.a>,<1.b>)不是满流,那么我们找到的路径不够2条(可能是1条,也可能0条),所以无解。

【问题另解】

经典的多线程动态规划问题。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int,int> PII;
typedef pair<ll,ll> Pll;
typedef vector<int> VI;
typedef vector<PII> VII;
typedef pair<ll,ll>P;
#define N 100010
#define M 1000000
#define INF 1e9
#define fi first
#define se second
#define MP make_pair
#define pb push_back
#define pi acos(-1)
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,b) for(int i=(int)a;i<=(int)b;i++)
#define per(i,a,b) for(int i=(int)a;i>=(int)b;i--)
#define lowbit(x) x&(-x)
#define Rand (rand()*(1<<16)+rand())
#define id(x) ((x)<=B?(x):m-n/(x)+1)
#define ls p<<1
#define rs p<<1|1 const ll MOD=1e9+,inv2=(MOD+)/;
double eps=1e-;
int dx[]={-,,,};
int dy[]={,,-,}; int head[N],vet[N],len1[N],len2[N],nxt[N],dis[N],q[N],inq[N],L[N],a[N],b[N],
num[N][],pre[N][],s,S,T,tot,ans1,ans2; char ch[N][],s1[],s2[]; int read()
{
int v=,f=;
char c=getchar();
while(c<||<c) {if(c=='-') f=-; c=getchar();}
while(<=c&&c<=) v=(v<<)+v+v+c-,c=getchar();
return v*f;
} void add(int a,int b,int c,int d)
{
nxt[++tot]=head[a];
vet[tot]=b;
len1[tot]=c;
len2[tot]=d;
head[a]=tot; nxt[++tot]=head[b];
vet[tot]=a;
len1[tot]=;
len2[tot]=-d;
head[b]=tot;
} bool spfa()
{
rep(i,,s)
{
dis[i]=-INF;
inq[i]=;
}
int t=,w=;
q[]=S; dis[S]=; inq[S]=;
while(t<w)
{
t++; int u=q[t%(s+)]; inq[u]=;
int e=head[u];
while(e)
{
int v=vet[e];
if(len1[e]&&dis[u]+len2[e]>dis[v])
{
dis[v]=dis[u]+len2[e];
pre[v][]=u;
pre[v][]=e;
if(!inq[v])
{
w++; q[w%(s+)]=v; inq[v]=;
}
}
e=nxt[e];
}
}
if(dis[T]==-INF) return ;
return ;
} void mcf()
{
int k=T;
int t=INF;
while(k!=S)
{
int e=pre[k][];
t=min(t,len1[e]);
k=pre[k][];
}
ans1+=t;
k=T;
while(k!=S)
{
int e=pre[k][];
len1[e]-=t;
len1[e^]+=t;
ans2+=t*len2[e];
k=pre[k][];
}
} void print(int k)
{
rep(i,,L[k]) printf("%c",ch[k][i]);
printf("\n");
} int main()
{
//freopen("1.in","r",stdin);
int n=read(),m=read();
rep(i,,n)
{
scanf("%s",ch[i]+);
L[i]=strlen(ch[i]+);
}
s=;
rep(i,,n)
rep(j,,) num[i][j]=++s;
S=num[][],T=num[n][];
tot=;
add(num[][],num[][],,);
rep(i,,n-) add(num[i][],num[i][],,);
add(num[n][],num[n][],,); int p=;
rep(i,,m)
{
scanf("%s",s1+);
scanf("%s",s2+);
int L1=strlen(s1+),L2=strlen(s2+),id1=,id2=;
rep(j,,n)
{
if(L[j]!=L1) continue;
int flag=;
rep(k,,L1)
if(ch[j][k]!=s1[k]){flag=; break;}
if(flag){id1=j; break;}
} rep(j,,n)
{
if(L[j]!=L2) continue;
int flag=;
rep(k,,L2)
if(ch[j][k]!=s2[k]){flag=; break;}
if(flag){id2=j; break;}
} if(id1>id2) swap(id1,id2);
if(id1==&&id2==n) p=;
add(num[id1][],num[id2][],,);
}
ans1=,ans2=;
while(spfa()) mcf();
//printf("ans1=%d ans2=%d\n",ans1,ans2);
if(ans1==&&p)
{
printf("2\n");
print();
print(n);
print();
} else if(ans1<) printf("No Solution!\n");
else
{
printf("%d\n",ans2-);
int k=,m1=,m2=;
while(k!=n)
{
a[++m1]=k;
int u=num[k][],e=head[u];
while(e)
{
int v=vet[e];
if(!len1[e])
{
k=(v+)/; len1[e]=-;
break;
}
e=nxt[e];
} }
k=;
while(k!=n)
{
b[++m2]=k;
int u=num[k][],e=head[u];
while(e)
{
int v=vet[e];
if(!len1[e])
{
k=(v+)/; len1[e]=-;
break;
}
e=nxt[e];
}
}
b[++m2]=n;
rep(i,,m2) print(b[i]);
per(i,m1,) print(a[i]);
} return ;
}

【PowerOJ1746&网络流24题】航空路线问题(费用流)的更多相关文章

  1. 2018.10.14 loj#6012. 「网络流 24 题」分配问题(费用流)

    传送门 费用流水题. 依然是照着题意模拟建边就行了. 为了练板子又重新写了一遍费用流. 代码: #include<bits/stdc++.h> #define N 305 #define ...

  2. 2018.10.14 loj#6011. 「网络流 24 题」运输问题(费用流)

    传送门 费用流入门题. 直接按照题意模拟. 把货物的数量当做容量建边. 然后跑一次最小费用流和最大费用流就行了. 代码: #include<bits/stdc++.h> #define N ...

  3. 【PowerOJ1752&网络流24题】运输问题(费用流)

    题意: 思路: [问题分析] 费用流问题. [建模方法] 把所有仓库看做二分图中顶点Xi,所有零售商店看做二分图中顶点Yi,建立附加源S汇T. 1.从S向每个Xi连一条容量为仓库中货物数量ai,费用为 ...

  4. LIbreOJ #6011. 「网络流 24 题」运输问题 最小费用最大流

    #6011. 「网络流 24 题」运输问题 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  5. LG2770/LOJ6122 航空路线问题 费用流 网络流24题

    问题描述 LG2770 LOG6122 题解 教训:关掉流同步之后就不要用其他输入输出方式了. 拆点. 两个拆点之间连\((1,1)\),其他连\((1,0)\) \(\mathrm{Code}\) ...

  6. CGOS461 [网络流24题] 餐巾(最小费用最大流)

    题目这么说的: 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,…,N).餐厅可以从三种途径获得餐巾. 购买新的餐巾,每块需p分: 把用过的餐巾送到快洗部,洗一块需m天,费用需f分(f< ...

  7. 洛谷P2770 航空路线问题(费用流)

    题意 $n$个点从左向右依次排列,有$m$条双向道路 问从起点到终点,再从终点回到起点,在经过的点不同的情况下最多能经过几个点 Sol 首先,问题可以转化为求两条互不相交的路径,使得点数最多 为了满足 ...

  8. 【题解】【网络流24题】航空路线问题 [P2770] [Loj6122]

    [题解][网络流24题]航空路线问题 [P2770] [Loj6122] 传送门:航空路线问题 \([P2770]\) \([Loj6122]\) [题目描述] 给出一张有向图,每个点(除了起点 \( ...

  9. loj #6122. 「网络流 24 题」航空路线问题

    #6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...

随机推荐

  1. 应用安全 - CMS - PHPCMS漏洞汇总

    CVE-2011-0644 Date: 2011.1 类型: /flash_upload.php SQL注入 影响版本:phpCMS 2008 V2 PHPCMS PHPCMS通杀XSS 在我要报错功 ...

  2. js swich

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  3. 面试题:线程A打印1-10数字,打印到第5个数字时,通知线程B

    此题考查的是线程间的通信方式. 可以利用park/unpark实现 可以利用volatile关键字实现 可以利用synchronized结合wait notify实现 可以利用JUC中的CountDo ...

  4. BindWeb - Bind智能DNS管理系统介绍

    2019-05-08 演示网站: https://bindw.cdneks.com demo/demo 2018-11-27 修改部署架构,取消网络共享存储设备,在每台BIND服务器启用NFS4并仅向 ...

  5. ubuntu14 teamviewer使用

    一. 软件安装 1.1. 下载.deb文件 下载13版本的,不要下载最新版本的 1.2. 环境配置 <1>. sudo dpkg --add-architecture i386 <2 ...

  6. easyui 前端分页及前端查询

    1.静态分页核心方法 // 前端分页 -- 将datagrid的loadFilter属性设置为这个方法名即可 function partPurchasePagerFilter(data) { if ( ...

  7. 通过编写串口助手工具学习MFC过程——(九)自动识别串口的方法

    通过编写串口助手工具学习MFC过程 因为以前也做过几次MFC的编程,每次都是项目完成时,MFC基本操作清楚了,但是过好长时间不再接触MFC的项目,再次做MFC的项目时,又要从头开始熟悉.这次通过做一个 ...

  8. Jenkins用户授予root权限

    Jenkins用户授予root权限   由于需要在jenkins中执行shell脚本,但是有些目录下没有权限,下面的操作为jenkins用户授予root权限.   jenkins用户加入到root组 ...

  9. phonetic

    Simple Classification of English Vowels and Consonants 1.Classifation of English Vowels a)Monophtong ...

  10. 配置阿里云SLB全站HTTPS集群(以下内容仅为流程,信息可能有些对应不上)

    1)登录阿里云购买两台实例 1.1) 按量付费购买两台实例 1.2) 配置网络可以不选择分配外网 1.3) 自定义密码 1.4) 购买完成 1.5) 实例列表 2)购买SLB实例 2.1)按量付费购买 ...