问题背景

在业务使用redis过程中,出现了read timeout 的异常。

问题排查

直接原因

运维查询redis慢查询日志,发现在异常时间节点,有redis慢查询日志,执行sadd 命令花费了1秒钟。但由于redis是单线程应用,执行单条命令的阻塞,会造成其他命令的排队等候,导致read timeout。

深入排查-为什么sadd这么慢呢

为什么sadd这么慢呢?查阅redis文档看到,sadd操作的复杂度是O(1)的,实际使用本机docker搭建redis进行测试,使用脚本进行sadd,直到800W以上的量级才偶尔出现100毫秒以上的情况。(测试过程详见后面)

搭建redis环境

偷懒在本机就行测试,使用docker跑起了redis应用,过程如下:

docker pull redis # 使用redis3.x版本docker run  -itv ~/redis.conf:/redis.conf -p 32768:6379 --name myredis5 -d redis redis-server /redis.conf

测试脚本

#coding=utf-8import timeimport redisimport random

r = redis.Redis(host='x.x.x.x', port=xxxx, decode_responses=True)   

k = 'key4'tarr = []

st = time.clock()

st2 = time.clock()
r.sadd(k, 1) # 创建连接也会有耗时for i in range(1, 1600000):
    t1 = time.clock() * 1000
    rn = random.randint(100000000000, 20000000000000)
    r.sadd(k, rn)
    t2 = time.clock() * 1000
    c = t2 - t1
    tarr.append(str(c))    if c > 100:        print i, cprint time.clock() s = "\n".join(tarr)with open('./result.txt', 'w') as f:
    f.write(s)

测试结果

到达800W的时候开始偶尔出现sadd需要100ms的现象。

问题分析

查询了很多资料,无意中看到redis del操作复杂度为O(n),这里补充一下超时的更多背景,举例如下:

慢查询日志时间:16号00点00分01秒,命令为sadd prefix_20180215, 且key有过期时间。

看到这里答案已经呼之欲出,是不是sadd触发了redis是过期删除操作,同时由于del命令的复杂度为O(n),时间花在了删除过期数据上。

测试重现

for i in range(1, 1000000):
    t1 = time.clock() * 1000
    rn = random.randint(100000000000, 20000000000000)
    r.sadd(k, rn)
    t2 = time.clock() * 1000
    c = t2 - t1
    tarr.append(str(c))    if c > 100:        print i, c x = int(time.time())
x += 10 #延时10每秒过期r.expire(k, 10)while True: 
    y = time.time()
    t1 = time.clock() * 1000
    rn = random.randint(1, 1000000000)
    r.sadd(k, rn)
    t2 = time.clock() * 1000
    tarr.append(str(c))    if c > 100:#复现sadd慢查询的情况
        print i, c    if y > x + 5: # 超时时间就break
        breakprint time.clock()

重现的步骤很简单,

  1. 给某个key sadd上足够的数据(百万级)

  2. 给key设置一个相对过期时间。

  3. 持续调用sadd命令,记录调用时间。

  4. 最后观察redis的慢查询日志。

如猜想一样,慢查询日志中出现了SADD命令,耗时1秒。

解决方案与总结

由于redis 对于集合键的del操作复杂度均为O(n),所以对于集合键,最好设置通过分片,避免单个key的值过大。

另外,redis4.0已经通过配置支持延时删除,可以通过lazyfree_lazy_expire/azyfree_lazy_eviction/lazyfree_lazy_server_del 来实现异步删除的操作,避免异步阻塞

延伸阅读

最后,让我们来看看redis3.x和4.x处理删除key的源码吧。

redis 有三种淘汰key的机制,分别为

  1. del命令

  1. 被动淘汰(当请求命令对应的键过期时进行删除)

  2. 主动删除(redis主动对键进行淘汰,回收内存)

我们先看看redis3.x版本中上面三种淘汰机制的入口代码。

del命令 - delCommand

void delCommand(client *c) {
    int deleted = 0, j;    for (j = 1; j < c->argc; j++) {
        expireIfNeeded(c->db,c->argv[j]);        if (dbDelete(c->db,c->argv[j])) {
            signalModifiedKey(c->db,c->argv[j]);
            notifyKeyspaceEvent(NOTIFY_GENERIC,                "del",c->argv[j],c->db->id);
            server.dirty++;
            deleted++;
        }
    }
    addReplyLongLong(c,deleted);
}

处理流程相当的简单,先检查键是否过期,然后调用dbDelete进行删除

被动淘汰 - expireIfNeeded

int expireIfNeeded(redisDb *db, robj *key) {    mstime_t when = getExpire(db,key);  //获取过期时间
    mstime_t now;    if (when < 0) return 0; /* No expire for this key */     /* Don't expire anything while loading. It will be done later. */
    if (server.loading) return 0;    /* If we are in the context of a Lua script, we claim that time is
     * blocked to when the Lua script started. This way a key can expire
     * only the first time it is accessed and not in the middle of the
     * script execution, making propagation to slaves / AOF consistent.
     * See issue #1525 on Github for more information. */
    now = server.lua_caller ? server.lua_time_start : mstime(); // 过去当前时间     /* If we are running in the context of a slave, return ASAP:
     * the slave key expiration is controlled by the master that will
     * send us synthesized DEL operations for expired keys.
     *
     * Still we try to return the right information to the caller,
     * that is, 0 if we think the key should be still valid, 1 if
     * we think the key is expired at this time. */
    if (server.masterhost != NULL) return now > when;    /* Return when this key has not expired */
    if (now <= when) return 0;      /* Delete the key */
    server.stat_expiredkeys++;
    propagateExpire(db,key); // 把过期时间传递出去(从库、AOF备份等)
    notifyKeyspaceEvent(NOTIFY_EXPIRED, 
        "expired",key,db->id); // 对db内的键发生的变动进行通知,适用于pubsub 通过pubsub来传递消息,可以用来作为redis的执行监控
    return dbDelete(db,key);
}

主动淘汰 - serverCron

server.c文件

int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) {   
   /**
    * sth not important
    */
    ...    
    /* We need to do a few operations on clients asynchronously. */
    clientsCron();    /* Handle background operations on Redis databases. */
    databasesCron();    /**
      * sth not important
      */ 
      ...
    
    server.cronloops++;    return 1000/server.hz;
}/* This function handles 'background' operations we are required to do
 * incrementally in Redis databases, such as active key expiring, resizing,
 * rehashing. */void databasesCron(void) {    /* Expire keys by random sampling. Not required for slaves
     * as master will synthesize DELs for us. */
    if (server.active_expire_enabled && server.masterhost == NULL)
        activeExpireCycle(ACTIVE_EXPIRE_CYCLE_SLOW);    /**
     * sth not important 
     */
     }/* Try to expire a few timed out keys. The algorithm used is adaptive and
 * will use few CPU cycles if there are few expiring keys, otherwise
 * it will get more aggressive to avoid that too much memory is used by
 * keys that can be removed from the keyspace.
 *
 * No more than CRON_DBS_PER_CALL databases are tested at every
 * iteration.
 *
 * This kind of call is used when Redis detects that timelimit_exit is
 * true, so there is more work to do, and we do it more incrementally from
 * the beforeSleep() function of the event loop.
 *
 * Expire cycle type:
 *
 * If type is ACTIVE_EXPIRE_CYCLE_FAST the function will try to run a
 * "fast" expire cycle that takes no longer than EXPIRE_FAST_CYCLE_DURATION
 * microseconds, and is not repeated again before the same amount of time.
 *
 * If type is ACTIVE_EXPIRE_CYCLE_SLOW, that normal expire cycle is
 * executed, where the time limit is a percentage of the REDIS_HZ period
 * as specified by the REDIS_EXPIRELOOKUPS_TIME_PERC define. */void activeExpireCycle(int type) {    int dbs_per_call = CRON_DBS_PER_CALL;    /* We usually should test CRON_DBS_PER_CALL per iteration, with
     * two exceptions:
     *
     * 1) Don't test more DBs than we have.
     * 2) If last time we hit the time limit, we want to scan all DBs
     * in this iteration, as there is work to do in some DB and we don't want
     * expired keys to use memory for too much time. */
    if (dbs_per_call > server.dbnum || timelimit_exit)
        dbs_per_call = server.dbnum; //每次清理扫描的数据库数     /* We can use at max ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC percentage of CPU time
     * per iteration. Since this function gets called with a frequency of
     * server.hz times per second, the following is the max amount of
     * microseconds we can spend in this function. */
    timelimit = 1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/server.hz/100;
    timelimit_exit = 0;    if (timelimit <= 0) timelimit = 1;    if (type == ACTIVE_EXPIRE_CYCLE_FAST)
        timelimit = ACTIVE_EXPIRE_CYCLE_FAST_DURATION; /* in microseconds. */     for (j = 0; j < dbs_per_call; j++) {        int expired;
        redisDb *db = server.db+(current_db % server.dbnum);        /* Increment the DB now so we are sure if we run out of time
         * in the current DB we'll restart from the next. This allows to
         * distribute the time evenly across DBs. */
        current_db++;        /* Continue to expire if at the end of the cycle more than 25%
         * of the keys were expired. */
         // 如果有超过25%的键过期了则继续扫描
        do {            unsigned long num, slots;            long long now, ttl_sum;            int ttl_samples;            /* If there is nothing to expire try next DB ASAP. */
            if ((num = dictSize(db->expires)) == 0) { //当前没有需要过期的键
                db->avg_ttl = 0;                break;
            }
            slots = dictSlots(db->expires);
            now = mstime();            /* When there are less than 1% filled slots getting random
             * keys is expensive, so stop here waiting for better times...
             * The dictionary will be resized asap. */
            if (num && slots > DICT_HT_INITIAL_SIZE &&
                (num*100/slots < 1)) break;            /* The main collection cycle. Sample random keys among keys
             * with an expire set, checking for expired ones. */
            expired = 0;
            ttl_sum = 0;
            ttl_samples = 0;            if (num > ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP) 
                num = ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP; // 3.2.11为20次             while (num--) {
                dictEntry *de;                long long ttl;                if ((de = dictGetRandomKey(db->expires)) == NULL) break; //随机获取一个键
                ttl = dictGetSignedIntegerVal(de)-now;                if (activeExpireCycleTryExpire(db,de,now)) expired++;                if (ttl > 0) {                    /* We want the average TTL of keys yet not expired. */
                    ttl_sum += ttl;
                    ttl_samples++;
                }
            }            /**
             * 这里有一些控制删除时间的逻辑和其他逻辑。
             */             if (timelimit_exit) return;            /* We don't repeat the cycle if there are less than 25% of keys
             * found expired in the current DB. */
        } while (expired > ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP/4); // 20次 / 4 
    }
}/* ======================= Cron: called every 100 ms ======================== *//* Helper function for the activeExpireCycle() function.
 * This function will try to expire the key that is stored in the hash table
 * entry 'de' of the 'expires' hash table of a Redis database.
 *
 * If the key is found to be expired, it is removed from the database and
 * 1 is returned. Otherwise no operation is performed and 0 is returned.
 *
 * When a key is expired, server.stat_expiredkeys is incremented.
 *
 * The parameter 'now' is the current time in milliseconds as is passed
 * to the function to avoid too many gettimeofday() syscalls. */int activeExpireCycleTryExpire(redisDb *db, dictEntry *de, long long now) {    long long t = dictGetSignedIntegerVal(de);    if (now > t) {
        sds key = dictGetKey(de);
        robj *keyobj = createStringObject(key,sdslen(key));         propagateExpire(db,keyobj);
        dbDelete(db,keyobj);
        notifyKeyspaceEvent(NOTIFY_EXPIRED,            "expired",keyobj,db->id);
        decrRefCount(keyobj);
        server.stat_expiredkeys++;        return 1;
    } else {        return 0;
    }
}

主动删除的调用路径为serverCron -> databasesCron -> activeExpireCycle ->  activeExpireCycleTryExpire, 我们主要看看activeExpireCycleTryExpire。

主动淘汰是通过随机采样来进行删除的,随机的算法很简单,就是通过random来进行的,先random出slot,然后random出slot上的链表中的某个节点。另外会根据删除时间长短和过期键的数量来决定一次 主动淘汰的扫描db数量和次数。

顺带说说,serverCron是redis的 周期任务,通过定时器注册,databasesCron除了主动淘汰键,还会做rehash、resize等事情。

底层调用

三种机制虽然不同,但他们调用的底层都是相同的——dbDelete方法。

db.c 文件

/* Delete a key, value, and associated expiration entry if any, from the DB */int dbDelete(redisDb *db, robj *key) {    /* Deleting an entry from the expires dict will not free the sds of
     * the key, because it is shared with the main dictionary. */
    if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr);    if (dictDelete(db->dict,key->ptr) == DICT_OK) {        if (server.cluster_enabled) slotToKeyDel(key);        return 1;
    } else {        return 0;
    }
}

dict.c文件

int dictDelete(dict *ht, const void *key) {    return dictGenericDelete(ht,key,0);
}/* Search and remove an element */static int dictGenericDelete(dict *d, const void *key, int nofree)
{
    unsigned int h, idx;
    dictEntry *he, *prevHe;
    int table;    if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
    if (dictIsRehashing(d)) _dictRehashStep(d);
    h = dictHashKey(d, key);    for (table = 0; table <= 1; table++) {
        idx = h & d->ht[table].sizemask;
        he = d->ht[table].table[idx];
        prevHe = NULL;        while(he) {            if (key==he->key || dictCompareKeys(d, key, he->key)) {                /* Unlink the element from the list */
                if (prevHe)
                    prevHe->next = he->next;                else
                    d->ht[table].table[idx] = he->next;                if (!nofree) {
                    dictFreeKey(d, he);
                    dictFreeVal(d, he);
                }
                zfree(he);
                d->ht[table].used--;                return DICT_OK;
            }
            prevHe = he;
            he = he->next;
        }        if (!dictIsRehashing(d)) break;
    }    return DICT_ERR; /* not found */}/* ------------------------------- Macros ------------------------------------*/#define dictFreeVal(d, entry) \
    if ((d)->type->valDestructor) \
        (d)->type->valDestructor((d)->privdata, (entry)->v.val)

server.c

/* Db->dict, keys are sds strings, vals are Redis objects. */dictType dbDictType = {
    dictSdsHash,                /* hash function */
    NULL,                       /* key dup */
    NULL,                       /* val dup */
    dictSdsKeyCompare,          /* key compare */
    dictSdsDestructor,          /* key destructor */
    dictObjectDestructor   /* val destructor */};void dictObjectDestructor(void *privdata, void *val){
    DICT_NOTUSED(privdata);    if (val == NULL) return; /* Values of swapped out keys as set to NULL */
    decrRefCount(val);
}

object.c

void decrRefCount(robj *o) {    if (o->refcount <= 0) serverPanic("decrRefCount against refcount <= 0");    if (o->refcount == 1) {        switch(o->type) {        case OBJ_STRING: freeStringObject(o); break;        case OBJ_LIST: freeListObject(o); break;        case OBJ_SET: freeSetObject(o); break;        case OBJ_ZSET: freeZsetObject(o); break;        case OBJ_HASH: freeHashObject(o); break;        default: serverPanic("Unknown object type"); break;
        }
        zfree(o);
    } else {
        o->refcount--;
    }
} void freeSetObject(robj *o) {    switch (o->encoding) {    case OBJ_ENCODING_HT:
        dictRelease((dict*) o->ptr);        break;    case OBJ_ENCODING_INTSET:
        zfree(o->ptr);        break;    default:
        serverPanic("Unknown set encoding type");
    }
}

可以看到核心的删除是在dictFreeVal里,对应了一个宏,这个宏调用的是对应dictType的 valDestructor,也就是dbDictType里指定的dictObjectDestructor函数,对应的删除操作在decrRefCount(严格来说是通过引用计数来管理声明周期)

decrRefCount内对每种数据类型有对应的释放方法,我们来看set的释放方法freeSetObject方法。根据Set的两种数据类型有两种处理方式,intset只需要释放指针就好了,如果是哈希表则调用dictRelease方法。

dict.c

/* Clear & Release the hash table */void dictRelease(dict *d)
{
    _dictClear(d,&d->ht[0],NULL);
    _dictClear(d,&d->ht[1],NULL);
    zfree(d);
}/* Destroy an entire dictionary */int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {
    unsigned long i;    /* Free all the elements */
    for (i = 0; i < ht->size && ht->used > 0; i++) {
        dictEntry *he, *nextHe;        if (callback && (i & 65535) == 0) callback(d->privdata);        if ((he = ht->table[i]) == NULL) continue;        while(he) {
            nextHe = he->next;
            dictFreeKey(d, he);
            dictFreeVal(d, he);
            zfree(he);
            ht->used--;
            he = nextHe;
        }
    }    /* Free the table and the allocated cache structure */
    zfree(ht->table);    /* Re-initialize the table */
    _dictReset(ht);    return DICT_OK; /* never fails */}

至此(dictClear方法)我们可以看到这是一个O(N)的过程,需要遍历ht每一个元素并进行删除,所以都存在阻塞redis的风险。(即使是主动淘汰的机制)

这一点在redis4.x系列已经通过延迟删除解决。

记一次redis读取超时的排查过程(SADD惹的祸)的更多相关文章

  1. redis连接超时问题排查

    连接池无法获取到连接或获取连接超时redis.clients.jedis.exceptions.JedisConnectionException: Could not get a resource f ...

  2. TPS低,CPU高--记一次storm压测问题排查过程

    一.业务背景+系统架构 本次场景为kafka+storm+redis+hbase,通过kafka的数据,进入storm的spout组件接收,转由storm的Bolt节点进行业务逻辑处理,最后再推送进k ...

  3. 记一次eclipse无法启动的排查过程

    起因是本地为开发工程打包,总是提示 source 1.3 不支持注释.enum等等,但询问开发开发表示自己本地打包正常. 于是排查版本问题.开发的jdk是1.6版本,自己的是1.7,于是想要不降级吧, ...

  4. 线上Redis偶发性链接失败排查记

    问题过程 输入法业务于12月12日上线了词库接受业务,对部分用户根据用户uuid判断进行回传,在12月17日早上8点多开始出现大量的php报错(Redis went away),报错导致了大量的链接积 ...

  5. 【Redis连接超时】记录线上RedisConnectionFailureException异常排查过程

    项目架构: 部分组件如下: SpringCloudAlibaba(Nacos+Gateway+OpenFeign)+SpringBoot2.x+Redis 问题背景: 最近由于用户量增大,在高峰时期, ...

  6. 记一次redis挂机导致的服务雪崩事故~不对,是故事

    事故时常有,最近特别多!但每次事故总会有人出来背锅!如果不是自己的锅,解决了对自己是一种成长,如果是自己的锅,恐怕锅大了,就得走人了,哈哈哈... 这不,最近又出了一个锅:从周五开始,每天到11点就不 ...

  7. 记一次redis攻击

    服务器挖矿病毒的排查过程 事情起因:朋友的一台阿里云主机,登录特别卡,找我看看 这一看就感觉出问题了,机器特别卡,top看了一眼,cpu几乎是100%运行 但是奇怪的是用top命令完全看不出来哪个进程 ...

  8. 一次线上Redis类转换异常排查引发的思考

    之前同事反馈说线上遇到Redis反序列化异常问题,异常如下: XxxClass1 cannot be cast to XxxClass2 已知信息如下: 该异常不是必现的,偶尔才会出现: 出现该异常后 ...

  9. 解Bug之路-记一次中间件导致的慢SQL排查过程

    解Bug之路-记一次中间件导致的慢SQL排查过程 前言 最近发现线上出现一个奇葩的问题,这问题让笔者定位了好长时间,期间排查问题的过程还是挺有意思的,正好博客也好久不更新了,就以此为素材写出了本篇文章 ...

随机推荐

  1. Vue.js 技术揭秘学习 (2) Vue 实例挂载的实现

    Vue 中我们是通过 $mount 实例方法去挂载 vm 的 $mount 方法实际上会去调用 mountComponent 方法,mountComponent 核心就是先实例化一个渲染Watcher ...

  2. [洛谷 P1377] TJOI2011 树的序

    问题描述 众所周知,二叉查找树的形态和键值的插入顺序密切相关.准确的讲:1.空树中加入一个键值k,则变为只有一个结点的二叉查找树,此结点的键值即为k:2.在非空树中插入一个键值k,若k小于其根的键值, ...

  3. hdu 5963:朋友

    刚看到这题时感觉是树上博弈,然后我开始用一维的数据找规律.发现在一维的树上,如果把各边的值合在一起当成一个二进制数,那么,ans只与奇偶性有关,于是,我提出了一个比较大胆的假设:若连接在root上的所 ...

  4. 【leetcode】1053. Previous Permutation With One Swap

    题目如下: Given an array A of positive integers (not necessarily distinct), return the lexicographically ...

  5. Task5.NB_SVM_LDA

    参考:https://blog.csdn.net/u013710265/article/details/72780520 贝叶斯公式就一行: P(Y|X)=P(X|Y)P(Y)P(X) 而它其实是由以 ...

  6. tensorflow函数介绍 (5)

    1.tf.ConfigProto tf.ConfigProto一般用在创建session的时候,用来对session进行参数配置: with tf.Session(config=tf.ConfigPr ...

  7. python生成HTMl报告(unittest)

      Python3 使用HTMLTestRunner.py 报错ImportError: No module named 'StringIO'处理方法 HTMLTestRunner.py文件是基于Py ...

  8. [CSP-S模拟测试]:sum(数学+莫队)

    题目传送门(内部题63) 输入格式 第一行有一个整数$id$,表示测试点编号.第一行有一个整数$q$,表示询问组数.然后有$q$行,每行有两个整数$n_i,m_i$. 输出格式 一共有$q$行,每行一 ...

  9. IDEA创建springboot异常(Failed to load class "org.slf4j.impl.StaticLoggerBinder")

    IDEA中创建springboot项目遇到的问题 SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". ...

  10. java.io.IOException: Malformed \uxxxx encoding.

    java.io.IOException: Malformed \uxxxx encoding.  at com.dong.frame.util.ReadProperties.read(ReadProp ...