Problem Description
Avin meets a rich customer today. He will earn 1 million dollars if he can solve a hard problem. There are n warehouses and m workers. Any worker in the i-th warehouse can handle ai orders per day. The customer wonders whether there exists one worker assignment method satisfying that every warehouse handles the same number of orders every day. Note that each worker should be assigned to exactly one warehouse and no worker is lazy when working.
 
Input
The first line contains two integers n (1 ≤ n ≤ 1, 000), m (1 ≤ m ≤ 1018). The second line contains n integers. The i-th integer ai (1 ≤ ai ≤ 10) represents one worker in the i-th warehouse can handle ai orders per day.
 
Output
If there is a feasible assignment method, print "Yes" in the first line. Then, in the second line, print n integers with the i-th integer representing the number of workers assigned to the i-th warehouse.
Otherwise, print "No" in one line. If there are multiple
solutions, any solution is accepted.
 
Sample Input
2 6
1 2
2 5
1 2
 
Sample Output
Yes
4 2
No
 
Source
中文题意:给你n个仓库,m个工人,每个仓库都有一个数值a[i],表示一个工人在这个仓库可以搬运东西的数量,问你如何分配工人,使每个仓库的搬运数量相等,若存在这种分配输出Yes,并输出分配方案,若不存在,输出No
思路:要使每个仓库的搬运数量相等,即每个仓库的a[i]*b[i](b[i]分配到这个仓库的工人)相等,即搬运数量是所有a[i]的公倍数,可以先求出最小公倍数s,让sum+=s/a[i],得出sum就是最小的工人数量,只有m%sum==0,才输出Yes
 
AC代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int cmp(int a,int b){
return a>b;
}
int zuixiao(int a,int b){
int s=1;
for(int i=2;i<=a&&i<=b;i++){
if(a%i==0&&b%i==0) a/=i,b/=i,s*=i,i=1;
}
return a*b*s;
}
int main(){
long long int a[1005],b[1005],c[1005],n,sum=0;
long long int m;
cin>>n>>m;
for(int i=0;i<n;i++) cin>>a[i],c[i]=a[i];
sort(a,a+n+1,cmp);
long long int s=a[0];
for(int i=1;i<n;i++){
if(s%a[i]==0) continue;
else s=zuixiao(s,a[i]);
}
for(int i=0;i<n;i++) sum+=s/c[i],b[i]=s/c[i];
if(m%sum==0) {
long long int k=m/sum;
cout<<"Yes"<<endl;
for(int i=0;i<n-1;i++) printf("%lld ",b[i]*k);
printf("%lld\n",b[n-1]*k);
}
else cout<<"No"<<endl;
return 0;
}

hdu6576Worker(最小公倍数)的更多相关文章

  1. 求N个数的最大公约数和最小公倍数(转)

    除了分解质因数,还有另一种适用于求几个较小数的最大公约数.最小公倍数的方法 下面是数学证明及算法实现 令[a1,a2,..,an] 表示a1,a2,..,an的最小公倍数,(a1,a2,..,an)表 ...

  2. C语言 · 最小公倍数

    问题描述 编写一函数lcm,求两个正整数的最小公倍数. 样例输入 一个满足题目要求的输入范例.例:3 5 样例输出 与上面的样例输入对应的输出.例: 数据规模和约定 输入数据中每一个数的范围. 例:两 ...

  3. Java程序设计之最大公约数和最小公倍数

    题目:输入两个正整数number1和number2,求其最大公约数和最小公倍数. 算法:较大数和较小数取余,较小数除余数,一直到余数为0时,为最大公约数(辗转相除法):最大公倍数numbe1*numb ...

  4. 最大公约数和最小公倍数--java实现

    代码: //最大公约数 public int gcd(int p,int q){ if(q == 0) return p; return gcd(q, p % q); } //最小公倍数 public ...

  5. python 最小公倍数

    最小公倍数 求解两个整数(不能是负数)的最小公倍数 方法一:穷举法 def LCM(m, n): if m*n == 0: return 0 if m > n: lcm = m else: lc ...

  6. 输入两个正整数m和n,求其最大公约数和最小公倍数

    public static void main(String[] args){  Scanner sc = new Scanner (System.in);  int a,b;  System.out ...

  7. Java编写最大公约数和最小公倍数

    package javaapplication24; class NegativeIntegerException extends Exception{ String message; public ...

  8. poj 3101Astronomy(圆周追击+分数最小公倍数)

    /* 本题属于圆周追击问题: 假设已知两个圆周运动的物体的周期分别是a ,b, 设每隔时间t就会在同一条直线上 在同一条直线上的条件是 角度之差为 PI ! 那么就有方程 (2PI/a - 2PI/b ...

  9. 【codevs1012】最大公约数和最小公倍数

    题目描述 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件:  1.P,Q是正整 ...

随机推荐

  1. 三:GC回收机制

    jvm垃圾回收机制: jvm中有个垃圾回收线程,它是低优先级的,当虚拟机空闲或堆内存不足时,它就会去清除不可达对象. GC是如何去判断对象是否能被回收的 早期GC判断对象是否能被回收时用的引用计数法, ...

  2. LeetCode Lect7 堆及其应用

    概述 堆是一颗完全二叉树.分为大根堆(父节点>=所有的子节点)和小根堆(父节点<=所有的子节点). 插入.删除堆顶都是O(logN),查询最值是O(1). 完全二叉树(Complete B ...

  3. sparkStreaming复习笔记(1)

    一.SparkStreaming 1.sparkcore模块的扩展,具有可扩展,高吞吐量,容错机制,针对实时数据流处理,数据可以来自于kafka,flume以及tcp套接字,可以使用更加复杂的函数来进 ...

  4. js中JSON和JSONP的区别,让你从懵逼到恍然大悟

    说到AJAX就会不可避免的面临两个问题,第一个是AJAX以何种格式来交换数据?第二个是跨域的需求如何解决?这两个问题目前都有不同的解决方案,比如数据可以用自定义字符串或者用XML来描述,跨域可以通过服 ...

  5. CentOS7搭建Hadoop2.8.0集群及基础操作与测试

    环境说明 示例环境 主机名 IP 角色 系统版本 数据目录 Hadoop版本 master 192.168.174.200 nameNode CentOS Linux release 7.4.1708 ...

  6. Django集合Ueditor

    语言版本环境:python3.6 1.win安装步骤: git下载源码https://github.com/zhangfisher/DjangoUeditor 解压DjangoUeditor3-mas ...

  7. PayPal支付对接

    开发时间:2019-04-30 我的目标:在我们公司的海外网站上,接入PayPal支付,美国用户在线完成付款. 准备: (1)准备:公司注册信息(执照,注册号,法人等),法人信息(身份证,住址等) ( ...

  8. 2018-12-25-win10-uwp-显示SVG

    title author date CreateTime categories win10 uwp 显示SVG lindexi 2018-12-25 10:37:5 +0800 2018-2-13 1 ...

  9. Oracle 附加日志(supplemental log)

    参考资料: 1.https://blog.csdn.net/li19236/article/details/41621179

  10. (NOIP)CSP-S 2019前计划

    前言 无 1.NOIP原题板刷 NOIP原题板刷 这是一篇咕了的blog 2.牛客 & ACwing & 洛谷 网课学习 收获还是蛮大的,不过我没有写博客 3.codeforces专项 ...