Description

Recently, the bear started studying data structures and faced the following problem.

You are given a sequence of integers x1, x2, ..., xn of length n and m queries, each of them is characterized by two integers li, ri. Let's introduce f(p) to represent the number of such indexes k, that xk is divisible by p. The answer to the query li, ri is the sum: , where S(li, ri) is a set of prime numbers from segment [li, ri] (both borders are included in the segment).

Help the bear cope with the problem.

Input

The first line contains integer n(1 ≤ n ≤ 106). The second line contains n integers x1, x2, ..., xn(2 ≤ xi ≤ 107). The numbers are not necessarily distinct.

The third line contains integer m(1 ≤ m ≤ 50000). Each of the following m lines contains a pair of space-separated integers, li andri(2 ≤ li ≤ ri ≤ 2·109) — the numbers that characterize the current query.

Output

Print m integers — the answers to the queries on the order the queries appear in the input.

Sample Input

Input
6
5 5 7 10 14 15
3
2 11
3 12
4 4
Output
9
7
0
Input
7
2 3 5 7 11 4 8
2
8 10
2 123
Output
0
7

Hint

Consider the first sample. Overall, the first sample has 3 queries.

  1. The first query l = 2, r = 11 comes. You need to count f(2) + f(3) + f(5) + f(7) + f(11) = 2 + 1 + 4 + 2 + 0 = 9.
  2. The second query comes l = 3, r = 12. You need to count f(3) + f(5) + f(7) + f(11) = 1 + 4 + 2 + 0 = 7.
  3. The third query comes l = 4, r = 4. As this interval has no prime numbers, then the sum equals 0.

查找一个区间内的,一系列数中,包含素数的个数。基本思路是:把这一系列数字中,到最大的数字Max之前是数字包含是素数的个数统计出来,然后用统计的个数区间的右端值减掉左端值减一,sum[right]-sum[left-1].因为求解的素数是包括最左端的这一个的,所以左端值应该减掉一。

比如说 对这样一个序列:5 6 7 ,则sum[1]=0;sum[2]=1;sum[3]=1;sum[4]=1;sum[5]=1;sum[6]=3;sum[7]=4; 若le=2,ri=7;ans=sum[7]-sum[1]=4;

codeforces 385 c的更多相关文章

  1. Codeforces 385 C Bear and Prime Numbers

    题目链接~~> 做题感悟:这题属于想法题,比赛时直接做的 D 题.可是处理坐标处理的头晕眼花的结果到最后也没AC. 解题思路: 由于查询的时候仅仅考虑素数,so~我们仅仅考虑素数就能够,这就须要 ...

  2. CodeForces 385 D.Bear and Floodlight 状压DP

    枚举灯的所有可能状态(亮或者不亮)(1<<20)最多可能的情况有1048576种 dp[i]表示 i 状态时灯所能照射到的最远距离(i 的二进制中如果第j位为0,则表示第j个灯不亮,否则就 ...

  3. Codeforces 385 D Bear and Floodlight

    主题链接~~> 做题情绪:时候最后有点蛋疼了,处理点的坐标处理晕了.so~比赛完清醒了一下就AC了. 解题思路: 状态压缩DP ,仅仅有 20 个点.假设安排灯的时候仅仅有顺序不同的问题.全然能 ...

  4. Codeforces Round #385 (Div. 2) B - Hongcow Solves A Puzzle 暴力

    B - Hongcow Solves A Puzzle 题目连接: http://codeforces.com/contest/745/problem/B Description Hongcow li ...

  5. Codeforces Round #385 (Div. 2) A. Hongcow Learns the Cyclic Shift 水题

    A. Hongcow Learns the Cyclic Shift 题目连接: http://codeforces.com/contest/745/problem/A Description Hon ...

  6. Codeforces Round #385 (Div. 1) C. Hongcow Buys a Deck of Cards

    地址:http://codeforces.com/problemset/problem/744/C 题目: C. Hongcow Buys a Deck of Cards time limit per ...

  7. Codeforces Round #385 (Div. 2) Hongcow Builds A Nation —— 图论计数

    题目链接:http://codeforces.com/contest/745/problem/C C. Hongcow Builds A Nation time limit per test 2 se ...

  8. Codeforces Round #385 (Div. 2) C - Hongcow Builds A Nation

    题目链接:http://codeforces.com/contest/745/problem/C 题意:给出n个点m条边,还有k个不能连通的点,问最多能添加几条边. 要知道如果有n个点最多的边是n*( ...

  9. Codeforces Round #385(div 2)

    A =w= B QwQ C 题意:n个点m条边的无向图,其中有k个特殊点,你在这张图上尽可能多的连边,要求k个特殊点两两不连通,问最多能连多少边 分析:并查集 对原图做一次并查集,找出特殊点所在集合中 ...

随机推荐

  1. 学习Linux下的IP地址地理位置信息显示工具nali

    首先详细教程已经有前辈做了详细的安装和使用介绍,本人只是参照学习和记录下自己的实际操做. 本文参考档:http://www.cnblogs.com/mchina/archive/2012/12/24/ ...

  2. [Effective JavaScript 笔记]第59条:避免过度的强制转换

    js是弱类型语言.许多标准的操作符和代码库会把输入参数强制转换为期望的类型而不是抛出错误.如果未提供额外的逻辑,使用内置操作符的程序会继承这样的强制转换行为. functin square(x){ r ...

  3. 6个关于dd命令备份Linux系统的例子

    数据丢失带来的损失是相当昂贵的.关键数据的丢失会对各种规模的企业带来影响.有几种方法来备份Linux系统,包括rsync的和rsnapshot等.本文提供有关使用dd命令备份Linux系统的6个实例. ...

  4. 91SDK接入及游戏发布、更新指南

    原地址:http://bbs.18183.com/thread-99382-1-1.html本帖最后由 啊,将进酒 于 2014-4-17 10:23 编辑 1.联系91的商务人员建讨论组或者厂商建Q ...

  5. i3D的一篇Unity教程中的笔记

    原地址:http://blog.sina.com.cn/s/blog_72b936d80100wwej.html 以下是i3D的一篇Unity教程中的笔记. i3D的这篇教程是[i3D.Next-Ge ...

  6. ORACLE10G工作原理

    数据库查询语句内部执行过程 Select * from   xxx 步骤 分析阶段(parse) 1.         共享池库高速缓存有没有该语句.如果有直接返回结果. 2.         语法分 ...

  7. 写时复制技术(Copy-on-write)

    COW技术初窥:        在Linux程序中,fork()会产生一个和父进程完全相同的子进程,但子进程在此后多会exec系统调用,出于效率考虑,linux中引入了"写时复制" ...

  8. JS匿名函数的理解

    js匿名函数的代码如下:(function(){ // 这里忽略jQuery 所有实现 })(); 半年前初次接触jQuery 的时候,我也像其他人一样很兴奋地想看看源码是什么样的.然而,在看到源码的 ...

  9. python模拟浏览器保存Cookie进行会话

    #! /usr/bin/env python # -*-coding:utf- -*- import urllib import urllib2 import cookielib class NetR ...

  10. Java for LeetCode 172 Factorial Trailing Zeroes

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...