题目这么说的:

一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,…,N)。餐厅可以从三种途径获得餐巾。

  1. 购买新的餐巾,每块需p分;
  2. 把用过的餐巾送到快洗部,洗一块需m天,费用需f分(f<p)。如m=l时,第一天送到快洗部的餐巾第二天就可以使用了,送慢洗的情况也如此。
  3. 把餐巾送到慢洗部,洗一块需n天(n>m),费用需s分(s<f)。

在每天结束时,餐厅必须决定多少块用过的餐巾送到快洗部,多少块送慢洗部。在每天开始时,餐厅必须决定是否购买新餐巾及多少,使洗好的和新购的餐巾之和满足当天的需求量Ri,并使N天总的费用最小。

挺有趣的题,至少还需要稍微思考思考。。考虑用最小费用最大流。

  • 首先显然要把各天作为点向汇点连容量为当天所需餐巾个数且费用为0的边,这样的最大流就满足各天供应的需求的条件;
  • 然后对于购买餐巾,源点向各天连容量为INF费用p的边;
  • 而最后还需要建洗餐巾重复利用餐巾的边,这么考虑:
    • 对于第i天都会有Ri个餐巾可以重复利用,而第j天(j>=i+m)则可以得到快洗的第i天的餐巾,单位费用为f,慢洗的同理;
    • 这样就清楚了:再新建n个顶点,源点向第i个新点连容量Ri费用0的边,第i个新点向第j天(j>=i+m)的点连容量INF费用f的边,第i个新点向第k天(k>=i+n)的点连容量INF费用s的边。

这样建完图跑最小费用最大流就OK了。

 #include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 444
#define MAXM 444*888
struct Edge{
int u,v,cap,cost,next;
}edge[MAXM];
int head[MAXN];
int NV,NE,vs,vt; void addEdge(int u,int v,int cap,int cost){
edge[NE].u=u; edge[NE].v=v; edge[NE].cap=cap; edge[NE].cost=cost;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].u=v; edge[NE].v=u; edge[NE].cap=; edge[NE].cost=-cost;
edge[NE].next=head[v]; head[v]=NE++;
}
bool vis[MAXN];
int d[MAXN],pre[MAXN];
bool SPFA(){
for(int i=;i<NV;++i){
vis[i]=;
d[i]=INF;
}
vis[vs]=;
d[vs]=;
queue<int> que;
que.push(vs);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap && d[v]>d[u]+edge[i].cost){
d[v]=d[u]+edge[i].cost;
pre[v]=i;
if(!vis[v]){
vis[v]=;
que.push(v);
}
}
}
vis[u]=;
}
return d[vt]!=INF;
}
int MCMF(){
int res=;
while(SPFA()){
int flow=INF,cost=;
for(int u=vt; u!=vs; u=edge[pre[u]].u){
flow=min(flow,edge[pre[u]].cap);
}
for(int u=vt; u!=vs; u=edge[pre[u]].u){
edge[pre[u]].cap-=flow;
edge[pre[u]^].cap+=flow;
cost+=flow*edge[pre[u]].cost;
}
res+=cost;
}
return res;
}
int need[];
int main(){
freopen("napkin.in","r",stdin);
freopen("napkin.out","w",stdout);
int n,p,a,b,x,y;
scanf("%d",&n);
for(int i=; i<=n; ++i){
scanf("%d",need+i);
}
scanf("%d%d%d%d%d",&p,&a,&b,&x,&y);
vs=; vt=n*+; NV=vt+; NE=;
memset(head,-,sizeof(head));
for(int i=; i<=n; ++i){
addEdge(vs,i+n,INF,p);
addEdge(i+n,vt,need[i],);
addEdge(vs,i,need[i],);
for(int j=i+a; j<=n; ++j) addEdge(i,j+n,INF,b);
for(int j=i+x; j<=n; ++j) addEdge(i,j+n,INF,y);
}
printf("%d",MCMF());
return ;
}

CGOS461 [网络流24题] 餐巾(最小费用最大流)的更多相关文章

  1. 【COGS 461】[网络流24题] 餐巾 最小费用最大流

    既然是最小费用最大流我们就用最大流来限制其一定能把每天跑满,那么把每个表示天的点向T连流量为其所需餐巾,费用为0的边,然后又与每天的餐巾对于买是无限制的因此从S向每个表示天的点连流量为INF,费用为一 ...

  2. Cogs 461. [网络流24题] 餐巾(费用流)

    [网络流24题] 餐巾 ★★★ 输入文件:napkin.in 输出文件:napkin.out 简单对比 时间限制:5 s 内存限制:128 MB [问题描述] 一个餐厅在相继的N天里,第i天需要Ri块 ...

  3. Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流)

    Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相 ...

  4. LOJ6002 - 「网络流 24 题」最小路径覆盖

    原题链接 Description 求一个DAG的最小路径覆盖,并输出一种方案. Solution 模板题啦~ Code //「网络流 24 题」最小路径覆盖 #include <cstdio&g ...

  5. LibreOJ #6002. 「网络流 24 题」最小路径覆盖

    #6002. 「网络流 24 题」最小路径覆盖 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测 ...

  6. [LOJ#6002]「网络流 24 题」最小路径覆盖

    [LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是  ...

  7. 【Codevs1237&网络流24题餐巾计划】(费用流)

    题意:一个餐厅在相继的 N 天里,每天需用的餐巾数不尽相同. 假设第 i 天需要 ri块餐巾(i=1,2,…,N).餐厅可以购买新的餐巾,每块餐巾的费用为 p 分: 或者把旧餐巾送到快洗部,洗一块需 ...

  8. [网络流24题]餐巾(cogs 461)

    [问题描述] 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,-,N).餐厅可以从三种途径获得餐巾. (1)购买新的餐巾,每块需p分: (2)把用过的餐巾送到快洗部,洗一块需m天,费用需f分 ...

  9. 网络流24题 餐巾计划(DCOJ8008)

    题目描述 一个餐厅在相继的 n nn 天里,每天需用的餐巾数不尽相同.假设第 i ii 天需要 ri r_ir​i​​ 块餐巾.餐厅可以购买新的餐巾,每块餐巾的费用为 P PP 分:或者把旧餐巾送到快 ...

随机推荐

  1. 【转】使用genstring和NSLocalizedString实现App文本的本地化

    原地址:http://www.cnblogs.com/U-tansuo/p/IOS_NSLocalizedString.html iOS提供了简便的方法来实现本地化,其中用的最多的就是NSLocali ...

  2. [BZOJ1067][SCOI2007]降雨量

    [BZOJ1067][SCOI2007]降雨量 试题描述 我们常常会说这样的话:“X年是自Y年以来降雨量最多的”.它的含义是X年的降雨量不超过Y年,且对于任意 Y<Z<X,Z年的降雨量严格 ...

  3. java笔试二

    16.同步和异步有何异同,在什么情况下分别使用他们?举例说明.如果数据将在线程间共享.例如正在写的数据以后可能被另一个线程读到,或者正在读的数据可能已经被另一个线程写过了,那么这些数据就是共享数据,必 ...

  4. BestCoder Round #60 1002

    Problem Description You are given two numbers NNN and MMM. Every step you can get a new NNN in the w ...

  5. iOS 关于objectForKey返回类型是不是mutable

    以前看NSUserDefault时,记住了那里的objectForKey返回的一定是immutable的对象.现在有点弄混了,其实,NSObject的objectForKey方法没有这个限制,是可以返 ...

  6. Delphi经验总结(3)

    ------------------------------------------------------- ◇删掉程序自己的exe文件 procedure TForm1.FormClose(Sen ...

  7. Java for LeetCode 059 Spiral Matrix II

    Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order. For ...

  8. Linux C 知识 char型数字转换为int型 int型 转换为Char

    前言 在九度oj做acm的时候,经常会遇到了char类型和int类型相互转化的问题,这里进行一下总结.今后,可能会多次更新博客,因为半年做了很多总结,但是都是保存在word文档上了,现在开始慢慢向CS ...

  9. php变量的几种写法

    一.最简单的 $str = 'Hello World!'; 二.来个变种 $str = 'good'; $good = 'test'; $test = 'Hello World!'; echo $$$ ...

  10. 会员制实现C2B定制有机农产品,被中粮我买投资的良食网这样卖有机生鲜

    前几天,中粮我买网战略投资了位于深圳的有机生鲜自营平台良食网,宣布双方将会在供应链上展开合作.然而良食网对大家来说还是比较陌生的,为此36氪专访了良食网的创始人唐忠. 良食网成立于2011年,是一家以 ...