引言

在上一篇 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机) 和之前的大数据学习系列之二 ----- HBase环境搭建(单机) 中成功搭建了Hive和HBase的环境,并进行了相应的测试。本文主要讲的是如何将Hive和HBase进行整合。

Hive和HBase的通信意图

Hive与HBase整合的实现是利用两者本身对外的API接口互相通信来完成的,其具体工作交由Hive的lib目录中的hive-hbase-handler-*.jar工具类来实现,通信原理如下图所示。

Hive整合HBase后的使用场景:

(一)通过Hive把数据加载到HBase中,数据源可以是文件也可以是Hive中的表。

(二)通过整合,让HBase支持JOIN、GROUP等SQL查询语法。

(三)通过整合,不仅可完成HBase的数据实时查询,也可以使用Hive查询HBase中的数据完成复杂的数据分析。

一、环境选择

1,服务器选择

本地虚拟机

操作系统:linux CentOS 7

Cpu:2核

内存:2G

硬盘:40G

2,配置选择

JDK:1.8 (jdk-8u144-linux-x64.tar.gz)

Hadoop:2.8.2 (hadoop-2.8.2.tar.gz)

Hive: 2.1 (apache-hive-2.1.1-bin.tar.gz)

HBase:1.6.2 (hbase-1.2.6-bin.tar.gz)

3,下载地址

官网地址

JDK:

http://www.oracle.com/technetwork/java/javase/downloads

Hadopp:

http://www.apache.org/dyn/closer.cgi/hadoop/common

Hive

http://mirror.bit.edu.cn/apache/hive/

HBase:

http://mirror.bit.edu.cn/apache/hbase/

百度云盘

链接:https://pan.baidu.com/s/1jIemIDC 密码:uycu

二、服务器的相关配置

在配置Hadoop+Hive+HBase之前,应该先做一下配置。

做这些配置为了方便,使用root权限。

1,更改主机名

首先更改主机名,目的是为了方便管理。

输入:

hostname

查看本机的名称

然后更改主机名为master

输入:

hostnamectl set-hostname master

注:主机名称更改之后,要重启(reboot)才会生效。

2,做IP和主机名的映射

修改hosts文件,做关系映射

输入

vim /etc/hosts

添加

主机的ip 和 主机名称

192.168.238.128 master

3,关闭防火墙

关闭防火墙,方便访问。

CentOS 7版本以下输入:

关闭防火墙

service   iptables stop

CentOS 7 以上的版本输入:

systemctl stop firewalld.service

4,时间设置

查看当前时间

输入:

date

查看服务器时间是否一致,若不一致则更改

更改时间命令

date -s ‘MMDDhhmmYYYY.ss’

5,整体的环境配置

/etc/profile 的整体配置

#Java Config
export JAVA_HOME=/opt/java/jdk1.8
export JRE_HOME=/opt/java/jdk1.8/jre
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib # Scala Config
export SCALA_HOME=/opt/scala/scala-2.12.2 # Spark Config
export SPARK_HOME=/opt/spark/spark1.6-hadoop2.4-hive # Zookeeper Config
export ZK_HOME=/opt/zookeeper/zookeeper3.4 # HBase Config
export HBASE_HOME=/opt/hbase/hbase1.2 # Hadoop Config
export HADOOP_HOME=/opt/hadoop/hadoop2.8
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib" # Hive Config
export HIVE_HOME=/opt/hive/hive2.1
export HIVE_CONF_DIR=${HIVE_HOME}/conf export PATH=.:${JAVA_HOME}/bin:${SCALA_HOME}/bin:${SPARK_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin:${ZK_HOME}/bin:${HBASE_HOME}/bin:${HIVE_HOME}/bin:$PATH

注:具体的配置以自己的为准,没有的不用配置。

三、Hadoop的环境配置

Hadoop的具体配置在大数据学习系列之一 ----- Hadoop环境搭建(单机) 中介绍得很详细了。所以本文就大体介绍一下。

注:具体配置以自己的为准。

1,环境变量设置

编辑 /etc/profile 文件 :

vim /etc/profile

配置文件:

export HADOOP_HOME=/opt/hadoop/hadoop2.8
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"
export PATH=.:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:$PATH

2,配置文件更改

先切换到 /home/hadoop/hadoop2.8/etc/hadoop/ 目录下

3.2.1 修改 core-site.xml

输入:

vim core-site.xml

在添加:

<configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>/root/hadoop/tmp</value>
<description>Abase for other temporary directories.</description>
</property>
<property>
<name>fs.default.name</name>
<value>hdfs://master:9000</value>
</property>
</configuration>

3.2.2修改 hadoop-env.sh

输入:

vim hadoop-env.sh

将${JAVA_HOME} 修改为自己的JDK路径

export   JAVA_HOME=${JAVA_HOME}

修改为:

export   JAVA_HOME=/home/java/jdk1.8

3.2.3修改 hdfs-site.xml

输入:

vim hdfs-site.xml

在添加:

<property>
<name>dfs.name.dir</name>
<value>/root/hadoop/dfs/name</value>
<description>Path on the local filesystem where theNameNode stores the namespace and transactions logs persistently.</description>
</property>
<property>
<name>dfs.data.dir</name>
<value>/root/hadoop/dfs/data</value>
<description>Comma separated list of paths on the localfilesystem of a DataNode where it should store its blocks.</description>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.permissions</name>
<value>false</value>
<description>need not permissions</description>
</property>

3.2.4 修改mapred-site.xml

如果没有 mapred-site.xml 该文件,就复制mapred-site.xml.template文件并重命名为mapred-site.xml。

输入:

vim mapred-site.xml

修改这个新建的mapred-site.xml文件,在节点内加入配置:

<property>
<name>mapred.job.tracker</name>
<value>master:9001</value>
</property>
<property>
<name>mapred.local.dir</name>
<value>/root/hadoop/var</value>
</property>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>

3,Hadoop启动

启动之前需要先格式化

切换到/home/hadoop/hadoop2.8/bin目录下

输入:

./hadoop  namenode  -format

格式化成功后,再切换到/home/hadoop/hadoop2.8/sbin目录下

启动hdfs和yarn

输入:

start-dfs.sh
start-yarn.sh

启动成功后,输入jsp查看是否启动成功

在浏览器输入 ip+8088 和ip +50070 界面查看是否能访问

能正确访问则启动成功

四、Hive的环境配置

Hive环境的具体配置在我的这篇大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机) 以及介绍得很详细了。本篇就大概介绍下。

修改hive-site.xml

切换到 /opt/hive/hive2.1/conf 目录下

将hive-default.xml.template 拷贝一份,并重命名为hive-site.xml

然后编辑hive-site.xml文件

cp hive-default.xml.template hive-site.xml
vim hive-site.xml

编辑hive-site.xml文件,在 中添加:

<!-- 指定HDFS中的hive仓库地址 -->
<property>
<name>hive.metastore.warehouse.dir</name>
<value>/root/hive/warehouse</value>
</property> <property>
<name>hive.exec.scratchdir</name>
<value>/root/hive</value>
</property> <!-- 该属性为空表示嵌入模式或本地模式,否则为远程模式 -->
<property>
<name>hive.metastore.uris</name>
<value></value>
</property> <!-- 指定mysql的连接 -->
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://master:3306/hive?createDatabaseIfNotExist=true</value>
</property>
<!-- 指定驱动类 -->
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
</property>
<!-- 指定用户名 -->
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
</property>
<!-- 指定密码 -->
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>123456</value>
</property>
<property>
<name>hive.metastore.schema.verification</name>
<value>false</value>
<description>
</description>
</property>

然后将配置文件中所有的

${system:java.io.tmpdir}

更改为 /opt/hive/tmp (如果没有该文件则创建),

并将此文件夹赋予读写权限,将

  ${system:user.name}

更改为 root

例如:

更改之前的:



更改之后:

配置图:

注: 由于hive-site.xml 文件中的配置过多,可以通过FTP将它下载下来进行编辑。也可以直接配置自己所需的,其他的可以删除。 MySQL的连接地址中的master是主机的别名,可以换成ip。

修改 hive-env.sh

修改hive-env.sh 文件,没有就复制 hive-env.sh.template ,并重命名为hive-env.sh

在这个配置文件中添加

export  HADOOP_HOME=/opt/hadoop/hadoop2.8
export HIVE_CONF_DIR=/opt/hive/hive2.1/conf
export HIVE_AUX_JARS_PATH=/opt/hive/hive2.1/lib

添加 数据驱动包

由于Hive 默认自带的数据库是使用mysql,所以这块就是用mysql

将mysql 的驱动包 上传到 /opt/hive/hive2.1/lib

五、HBase的环境配置

HBase环境的具体配置在我的这篇大数据学习系列之二 ----- HBase环境搭建(单机) 以及介绍得很详细了。本篇就大概介绍下。

修改 hbase-env.sh

编辑 hbase-env.sh 文件,添加以下配置

export JAVA_HOME=/opt/java/jdk1.8
export HADOOP_HOME=/opt/hadoop/hadoop2.8
export HBASE_HOME=/opt/hbase/hbase1.2
export HBASE_CLASSPATH=/opt/hadoop/hadoop2.8/etc/hadoop
export HBASE_PID_DIR=/root/hbase/pids
export HBASE_MANAGES_ZK=false

说明:配置的路径以自己的为准。HBASE_MANAGES_ZK=false 是不启用HBase自带的Zookeeper集群。

修改 hbase-site.xml

编辑hbase-site.xml 文件,在添加如下配置

<!-- 存储目录 -->
<property>
<name>hbase.rootdir</name>
<value>hdfs://test1:9000/hbase</value>
<description>The directory shared byregion servers.</description>
</property>
<!-- hbase的端口 -->
<property>
<name>hbase.zookeeper.property.clientPort</name>
<value>2181</value>
<description>Property from ZooKeeper'sconfig zoo.cfg. The port at which the clients will connect.
</description>
</property>
<!-- 超时时间 -->
<property>
<name>zookeeper.session.timeout</name>
<value>120000</value>
</property>
<!-- zookeeper 集群配置。如果是集群,则添加其它的主机地址 -->
<property>
<name>hbase.zookeeper.quorum</name>
<value>test1</value>
</property>
<property>
<name>hbase.tmp.dir</name>
<value>/root/hbase/tmp</value>
</property>
<!-- false是单机模式,true是分布式模式 -->
<property>
<name>hbase.cluster.distributed</name>
<value>false</value>
</property>

说明:hbase.rootdir:这个目录是region server的共享目录,用来持久化Hbase 。hbase.cluster.distributed :Hbase的运行模式。false是单机模式,true是分布式模式。若为false,Hbase和Zookeeper会运行在同一个JVM里面。

六、Hive整合HBase的环境配置以及测试

1,环境配置

因为Hive与HBase整合的实现是利用两者本身对外的API接口互相通信来完成的,其具体工作交由Hive的lib目录中的hive-hbase-handler-.jar工具类来实现。所以只需要将hive的 hive-hbase-handler-.jar 复制到hbase/lib中就可以了。

切换到hive/lib目录下

输入:

cp hive-hbase-handler-*.jar /opt/hbase/hbase1.2/lib



注: 如果在hive整合hbase中,出现版本之类的问题,那么以hbase的版本为主,将hbase中的jar包覆盖hive的jar包。

2,hive和hbase测试

在进行测试的时候,确保hadoop、hbase、hive环境已经成功搭建好,并且都成功启动了。

打开xshell的两个命令窗口

一个进入hive,一个进入hbase

6.2.1在hive中创建映射hbase的表

在hive中创建一个映射hbase的表,为了方便,设置两边的表名都为t_student,存储的表也是这个。

在hive中输入:

create table t_student(id int,name string) stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' with serdeproperties("hbase.columns.mapping"=":key,st1:name") tblproperties("hbase.table.name"="t_student","hbase.mapred.output.outputtable" = "t_student");

说明:第一个t_student 是hive表中的名称,第二个t_student是定义在hbase的table名称 ,第三个t_student 是存储数据表的名称("hbase.mapred.output.outputtable" = "t_student"这个可以不要,表数据就存储在第二个表中了) 。

(id int,name string) 这个是hive表结构。如果要增加字段,就以这种格式增加。如果要增加字段的注释,那么在字段后面添加comment ‘你要描述的’。

例如:

create table t_student(id int comment ‘StudentId’,name string comment ‘StudentName’)

org.apache.hadoop.hive.hbase.HBaseStorageHandler 这个是指定的存储器。

hbase.columns.mapping 是定义在hbase的列族。

例如:st1就是列族,name就是列。在hive中创建表t_student,这个表包括两个字段(int型的id和string型的name)。 映射为hbase中的表t_student,key对应hbase的rowkey,value对应hbase的st1:name列。

表成功创建之后

在hive、hbase分别中查看表和表结构

hive中输入

show tables;
describe t_student;

hbase输入:

list
describe ‘t_student’



可以看到表已经成功的创建了

6.2.2数据同步测试

进入hbase之后

在t_student中添加两条数据 然后查询该表

put 't_student','1001','st1:name','zhangsan'
put 't_student','1002','st1:name','lisi'
scan 't_student'

然后切换到hive中

查询该表

输入:

select * from t_student;

然后在hive中删除该表

注:因为做测试要看结果,所以将表删除了。如果同学们要做测试的话,是没有必要删除该表的,因为在后面还会使用该表。

然后查看hive和hbase中的表是否删除了

输入:

drop table t_student;



通过这些可以看到hive和hbase之间的数据成功同步!

6.2.3关联查询测试

hive外部表测试

先在hbase中建一张t_student_info表,添加两个列族

然后查看表结构

输入:

create 't_student_info','st1','st2'
describe 't_student_info'

然后在hive中创建外部表

说明:创建外部表要使用EXTERNAL 关键字

输入:

create external table t_student_info(id int,age int,sex string) stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' with serdeproperties("hbase.columns.mapping"=":key,st1:age,st2:sex") tblproperties("hbase.table.name"="t_student_info");

然后在t_student_info 中添加数据

put 't_student_info','1001','st2:sex','man'
put 't_student_info','1001','st1:age','20'
put 't_student_info','1002','st1:age','18'
put 't_student_info','1002','st2:sex','woman'

然后在hive中查询该表

输入:

select * from t_student_info;

查询到数据之后,然后将t_student 和t_student_info进行关联查询。

输入:

select * from t_student t join t_student ti where t.id=ti.id ;



说明:通过关联查询,可以得出表之间是可以关联查询的。但是明显看到hive 使用默认的mapreduce 作为引擎是多么的慢。。。

其他说明:

由于自己的虚拟机配置实在太渣,即使调大reduce内存,限制每个reduce处理的数据量,还是不行,最后没办法使用公司的测试服务进行测试。

在查询一张表的时候,hive没有使用引擎,因此相对比较快,如果是进行了关联查询之类的,就会使用引擎,由于hive默认的引擎是mr,所以会很慢,也和配置有一定关系,hive2.x以后官方就不建议使用mr了。

本文到此结束,谢谢阅读!

版权声明:

作者:虚无境

博客园出处:http://www.cnblogs.com/xuwujing

CSDN出处:http://blog.csdn.net/qazwsxpcm    

个人博客出处:http://www.panchengming.com

原创不易,转载请标明出处,谢谢!

大数据学习系列之五 ----- Hive整合HBase图文详解的更多相关文章

  1. 大数据学习笔记——Spark工作机制以及API详解

    Spark工作机制以及API详解 本篇文章将会承接上篇关于如何部署Spark分布式集群的博客,会先对RDD编程中常见的API进行一个整理,接着再结合源代码以及注释详细地解读spark的作业提交流程,调 ...

  2. 大数据学习系列之九---- Hive整合Spark和HBase以及相关测试

    前言 在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为h ...

  3. 大数据学习系列之六 ----- Hadoop+Spark环境搭建

    引言 在上一篇中 大数据学习系列之五 ----- Hive整合HBase图文详解 : http://www.panchengming.com/2017/12/18/pancm62/ 中使用Hive整合 ...

  4. 大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 图文详解

    引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单 ...

  5. 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机)

    引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用 ...

  6. 大数据工具篇之Hive与HBase整合完整教程

    大数据工具篇之Hive与HBase整合完整教程 一.引言 最近的一次培训,用户特意提到Hadoop环境下HDFS中存储的文件如何才能导入到HBase,关于这部分基于HBase Java API的写入方 ...

  7. 如何用R来处理数据表的长宽转换(图文详解)

    不多说,直接上干货! 很多地方都需用到这个知识点,比如Tableau里.   通常可以采取如python 和 r来作为数据处理的前期. Tableau学习系列之Tableau如何通过数据透视表方式读取 ...

  8. 大数据学习系列之三 ----- HBase Java Api 图文详解

    版权声明: 作者:虚无境 博客园出处:http://www.cnblogs.com/xuwujing CSDN出处:http://blog.csdn.net/qazwsxpcm 个人博客出处:http ...

  9. 大数据学习系列之—HBASE

    hadoop生态系统 zookeeper负责协调 hbase必须依赖zookeeper flume 日志工具 sqoop 负责 hdfs dbms 数据转换 数据到关系型数据库转换 大数据学习群119 ...

随机推荐

  1. 最长上升子序列(logN算法)

    例如:1 7 3 5 9 4 8 一个序列,比如说a[]={1,7,3,5,9,4,8},找出它的最长上升子序列的个数,很明显是4个,可以是{1,3,5,9},{1,3,5,8}或者{1,3,4,8} ...

  2. JavaScript sort() 方法详解

    定义和用法 sort() 方法用于对数组的元素进行排序. 语法 arrayObject.sort(sortby) 参数 描述 sortby 可选.规定排序顺序.必须是函数. 返回值 对数组的引用.请注 ...

  3. Problem E: 动物爱好者

    Problem E: 动物爱好者 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 882  Solved: 699[Submit][Status][Web ...

  4. Jumpserver部署与安装

    jumpserver特点: 完全开源,GPL授权 Python编写,容易再次开发 实现了跳板机基本功能,认证.授权.审计 集成了Ansible,批量命令等 支持WebTerminal Bootstra ...

  5. JAVA 的关键字 、

    关键字: 被JAVA语言赋予特定含义的单词, 特点: 组成关键字的单词的字母全部小写 注意: A:goto 和 const 是保留字 B: 类似于Notepad++ 这样的高级记事本,针对关键字有特殊 ...

  6. mysql 读写分离

    常见的读写分离方案:1)Amoeba读写分离2)MySQL-Proxy读写分离3)基于程序读写分离(效率很高,实施难度大,开发改代码) 2)原理 web 访问数据库,通过proxy4040端口作为转发 ...

  7. Python函数篇:装饰器

    装饰器本质上是一个函数,该函数用来处理其他函数,它可以让其他函数在不需要修改代码的前提下增加额外的功能,装饰器的返回值也是一个函数对象.它经常用于有切面需求的场景,比如:插入日志.性能测试.事务处理. ...

  8. elastic-search单机部署以及中文分词IKAnalyzer安装

    前提条件 elasticsearch使用版本5.6.3,需要jdk版本1.8,低于该版本不能使用 下载 https://artifacts.elastic.co/downloads/elasticse ...

  9. 常用的Python代码段

    过滤列表 #filter out empty strings in a sting list list = [x for x in list if x.strip()!=''] 一行一行地读文件 wi ...

  10. CentOS6.8系统下,ecipse下进行编辑操作,意外退出

    错误情况:centos下打开eclipse软件,点击*.java或者*.pom软件卡死,命令行终端报错误信息,稍后eclipse自动退出. 错误信息: Java: cairo-misc.c:380: ...