POJ1032 Parliament(数论)
You are to write a program that will determine how many delegates should contain each group in order for Parliament to work as long as possible.
Input
Output
Sample Input
7
Sample Output
3 4 这道题就是将n分成若干个不同的正整数的和,使其相乘最大,求分成哪几个数。 题解:就是将n分成2,3,......,直到不能分为止,然后怎么办呢,剩下的就倒着分配回去,这样乘积最大。 转一下:http://www.cnblogs.com/Missa/archive/2012/10/11/2719943.html
给你一个n问求使得 a1+a2+..ak==n时 a1*a2*..ak最大。。a1 a2.....不相等。(没看懂题目意思。。)
以下转自http://blog.himdd.com/?p=1918
思路:将一个数分成2份,如何分,使得这两个数乘积最大。答案是将这个数平分,证明是求x*(n-x)的最大值。基于这种思路,将N分成乘积最大的不相等的多份,应使得其中每份的数相差尽量少,即差值为1的等差数列为最理想状态。构造了一个等差数列以后,再根据剩余值对整个数列的值进行调整。使得相邻元素差值达到最小。这里注意,等差数列的构造应以2为首项,1为首项的话,对乘积没影响。。。
(以下证明是从网上得来的)
由题意知,这种分解的数目是有限的,因此,最大积存在;
假设最大积的分解为:
N=a1+a2+a3+…+a[t-2]+a[t-1]+a[t] (t是分解的数目,a1<a2<a3<...<a[t-2]<a[t-1]<a[t])
下面是该数列的性质及其证明:
1)a1>1;
如果a1=1,则a1和a[t]可以由a[t]+a1=a[t]+1来替代,从而得到更大的积;
2)对于所有的i,有a[i+1]-a[i]<= 2;
如果存在i使得a[i+1]-a[i]>=3,则a[i]和a[i+1]可以替换为a[i]+1,a[i+1]-1,从而使乘积更大;
3)最多只存在一个i使得a[i+1]-a[i]=2;
如果i< j且a[i+1]-a[i]=2、a[j+1]-a[j]=2,则a[i],a[j+1]可以替换为a[i]+1,a[j+1]-1,从而使得乘积更大;
4)a1<=3;
如果a1>=4,则a1和a2可以替换为2,a1-1,a2-1,从而使得乘积更大;
5)如果a1=3且存在i满足a[i+1]-a[i]=2,则i一定等于t-1;
如果i<t-1,则a[i+2]可以替换为2,a[i+2]-2,从而使得乘积更大;< p="">
将上面5条性质综合一下,得到该数列满足:
1)1< a1< 4
2)a[i+1]-a[i] <=2(该序列按升序排序)
3)a[i+1]-a[i]=2的情况最多只有一个
因此,我们得到最大的乘积的做法就是求出从2开始的最大连续(由上面总结的性质2和3可知)自然数列之和A,使得A的值不超过N,具体分析如下:
对输入的N,找到k满足:
A=2+3+4+...+(k-1)+k <= N < A+(k+1) = B
假设N=A+p(0<=p< k+1),即A+p是最大积的数列
1)p=0,则最大积是A;
2)1<=p<=k-1,则最大积是B-{k+1-p},即从数列的最大项i开始,从大到小依次每项加1,知道p=0为止;
3)p=k,则最大积是A+p=A+k=A-{2}+{k+2};( =3+4+...+k+( k+2) );
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; int n;
int a[],top=; int main()
{
scanf("%d",&n);
int st=;
while (n>=st)
{
a[++top]=st;
n-=st;
st++;
}
for (int i=top;i>=top-n+;i--)
a[i]++;
if (n>top) a[top]++;
for (int i=;i<=top-;i++)
printf("%d ",a[i]);
printf("%d\n",a[top]);
}
POJ1032 Parliament(数论)的更多相关文章
- POJ1032 Parliament
题目来源:http://poj.org/problem?id=1032 题目大意:给定一个正整数N(5<=N<=1000),将N拆为若干个不同的数使得它们的乘积最大(找到一组互不相等,和为 ...
- Codeforces Round #382 Div. 2【数论】
C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...
- NOIP2014 uoj20解方程 数论(同余)
又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...
- 数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)
~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不 ...
- hdu 1299 Diophantus of Alexandria (数论)
Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
- 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)
4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 290 Solved: 148[Submit][Status ...
- bzoj2219: 数论之神
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- hdu5072 Coprime (2014鞍山区域赛C题)(数论)
http://acm.hdu.edu.cn/showproblem.php?pid=5072 题意:给出N个数,求有多少个三元组,满足三个数全部两两互质或全部两两不互质. 题解: http://dty ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
随机推荐
- MongoDb 入门教程
MongoDb 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的. 它是可扩展的高性能数据存储解决方案,经常被用于非关系型数据的存储,能存储海量的数据. 常 ...
- Jmeter之Bean shell学习(一)
一.什么是Bean Shell BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法; BeanShell是一种松散类型的脚本语言(这点和JS类似); BeanS ...
- SpirngMVC入门第一天
SpringMVC第一天 1. 计划 第一天 1.SpringMVC介绍 2.入门程序 3.SpringMVC架构讲解 a ...
- 搭建LAMP及wordpress
author:JevonWei 版权声明:原创作品 安装软件包 [root@danran ~]# yum -y install httpd mariadb-server mariadb php php ...
- 实现一个简单的Laravel的dd库
前几天写了一个简单的Laravel的dd库. 为什么自己要写一个这样的库? Laravel本身已经实现了自己的输出dd函数,但是我之所以要写这样一个库,一来是因为Laravel本身对这个库的封装没办法 ...
- webservice时间类型XMLGregorianCalendar和Date的转换
//ISO日期转换为UTC日期 public XMLGregorianCalendar xmlToDate(Date date){ GregorianCalendar cal = new Gregor ...
- 数据库学习任务二:数据库连接对象SqlConnection
数据库应用程序的开发流程一般主要分为以下几个步骤: 创建数据库 使用Connection对象连接数据库 使用Command对象对数据源执行SQL命令并返回数据 使用DataReader和DataSet ...
- 英语词典Alpha版本发布说明
Alpha版本发布说明 功能: ·简洁的应用界面,不被无良的广告弹窗影响 ·功能直接,在需要查词时及时出现,没有每日一句精选文章等杀了你的流量,在学习过程中更加专注! ·采用金山词霸API,提供发音 ...
- Swing-GridBagLayout用法-入门
注:本文内容转自:Java Layout总结-GridBagLayout.内容根据笔者理解稍有整理. GridBagLayout布局管理器:这就是最复杂的一个布局管理器了,网格包布局.在此布局中,组件 ...
- 201521123056 《Java程序设计》第7周学习总结
1. 本周学习总结 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 1.2 解释E remove(int index)源代码 1.3 结合1. ...